Abstract

A new type of diffractive optical bar code produced by computer-generated holographic technology is proposed. The message in the proposed bar code is hidden in the diffracted light of the bar code element and can be read from the first diffraction order. In contrast to the conventional hidden bar code, which needs a lens to focus the diffracted light, the proposed hidden bar code has a property of self-focusing. This self-focusing ability is achieved by modulating a function of the Fresnel zone plate into the bar code format. Consequently, the read-out process for the information in this hidden bar code avoids the use of a lens. Experiments have shown the feasibility of the proposed bar code and confirmed that it can perform better than the conventional hidden bar code.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Tsi, K. Marom, J. Katz, J. Swartz, “System analysis of CCD-based bar code readers,” Appl. Opt. 32, 3504–3512 (1993).
    [CrossRef] [PubMed]
  2. J. M. Eastman, A. M. Quinn, “Diffraction analysis of beams for bar code scanning,” in High-Speed Inspection Architectures, Barcoding, and Character Recognition, M. J. Chen, ed., Proc. SPIE1384, 185–194 (1990).
    [CrossRef]
  3. D. J. Reiley, “Polarization of barcode readers,” Opt. Eng. 37, 688–695 (1998).
    [CrossRef]
  4. S. J. Bever, J. P. Allebach, “Synthesis of diffractive optical barcode,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, Proc. SPIE1211, 38–49 (1990).
    [CrossRef]
  5. W-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1978), Vol. 16, pp. 126–133.
    [CrossRef]
  6. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), pp. 375–376.
  7. H. H. Barrett, F. A. Horrigan, “Fresnel zone plate imaging of gamma rays; theory,” Appl. Opt. 12, 2686–2702 (1973).
    [CrossRef] [PubMed]
  8. A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–88.

1998

D. J. Reiley, “Polarization of barcode readers,” Opt. Eng. 37, 688–695 (1998).
[CrossRef]

1993

1973

Allebach, J. P.

S. J. Bever, J. P. Allebach, “Synthesis of diffractive optical barcode,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, Proc. SPIE1211, 38–49 (1990).
[CrossRef]

Barrett, H. H.

Bever, S. J.

S. J. Bever, J. P. Allebach, “Synthesis of diffractive optical barcode,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, Proc. SPIE1211, 38–49 (1990).
[CrossRef]

Eastman, J. M.

J. M. Eastman, A. M. Quinn, “Diffraction analysis of beams for bar code scanning,” in High-Speed Inspection Architectures, Barcoding, and Character Recognition, M. J. Chen, ed., Proc. SPIE1384, 185–194 (1990).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–88.

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), pp. 375–376.

Horrigan, F. A.

Katz, J.

Lee, W-H.

W-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1978), Vol. 16, pp. 126–133.
[CrossRef]

Marom, K.

Quinn, A. M.

J. M. Eastman, A. M. Quinn, “Diffraction analysis of beams for bar code scanning,” in High-Speed Inspection Architectures, Barcoding, and Character Recognition, M. J. Chen, ed., Proc. SPIE1384, 185–194 (1990).
[CrossRef]

Reiley, D. J.

D. J. Reiley, “Polarization of barcode readers,” Opt. Eng. 37, 688–695 (1998).
[CrossRef]

Shulman, A. R.

A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.

Swartz, J.

Tsi, D.

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), pp. 375–376.

Appl. Opt.

Opt. Eng.

D. J. Reiley, “Polarization of barcode readers,” Opt. Eng. 37, 688–695 (1998).
[CrossRef]

Other

S. J. Bever, J. P. Allebach, “Synthesis of diffractive optical barcode,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, Proc. SPIE1211, 38–49 (1990).
[CrossRef]

W-H. Lee, “Computer-generated holograms: techniques and applications,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1978), Vol. 16, pp. 126–133.
[CrossRef]

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), pp. 375–376.

A. R. Shulman, Optical Data Processing (Wiley, New York, 1970), p. 387.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–88.

J. M. Eastman, A. M. Quinn, “Diffraction analysis of beams for bar code scanning,” in High-Speed Inspection Architectures, Barcoding, and Character Recognition, M. J. Chen, ed., Proc. SPIE1384, 185–194 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical bar representation of decimal number 49. Black stripes mean brightness, and blank spaces mean darkness.

Fig. 2
Fig. 2

Diffraction of the self-focusing hidden bar code element.

Fig. 3
Fig. 3

Diagram of the manufacture of the self-focusing hidden bar code element.

Fig. 4
Fig. 4

Diffraction pattern of the proposed self-focusing diffractive bar code and the corresponding digital message. The contained information is a decimal number sequence of 13 digits: 0123456789876.

Tables (1)

Tables Icon

Table 1 Relation between Decimal Digits and Binary-Coded Decimal Code

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Rn2=nR12,
tr=12+12sgnsinπr2/R12,
sgnx=+1,x0-1,x<0.
tr=12+1jπm=-1mexpjmπ r2R12.
fm=R12mλ,
Ux, y, f1=-Aπλf1expj 2πλ f1×expj πλf1x2+y2×Fϕx, yu=xλf1, ν=yλf1,
Ix, y, f1=Aπλf12Fϕx, yu=xλf1, ν=yλf12.
Ix, y, f1=I0 sinc2axλf1sinc2byλf1,
0000000100100011010001010110011110001001100001110110.
111100000001001000110100010101100111100010011000011101101011.

Metrics