Abstract

A photonic encoder–decoder pair for optical code-division multiplexing (OCDM) that uses time-to-space converters and angle-multiplexed holograms is proposed. The encoder converts the pulse from each input port into a specific code and multiplexes input signals into the output port. The hologram in the decoder generates a correlation waveform between the transmitted code and the recorded code. The performance of the OCDM system with the encoder–decoder pair is estimated. The maximum spectral efficiency for 8-bit length orthogonal codes in the worst case at a bit-error rate of 10-9 is 0.17 (bits/s)/Hz when the number of channels is 8.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
    [CrossRef] [PubMed]
  2. J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  3. H. P. Sardesai, C.-C. Chang, A. M. Weiner, “A femtosecond code-division multiple access communication system test bed,” J. Lightwave Technol. 16, 1953–1964 (1998).
    [CrossRef]
  4. P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
    [CrossRef]
  5. J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
    [CrossRef]
  6. R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
    [CrossRef]
  7. N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999).
    [CrossRef]
  8. Y. T. Mazurenko, “Detection and reconstruction of ultrashort pulses by interference of spectrally dispersed light,” Sov. J. Quantum Electron. 15, 815–818 (1985).
    [CrossRef]
  9. Y. T. Mazurenko, “Interference of spectrally dispersed light,” Opt. Spectrosc. (USSR) 56, 357 (1984).
  10. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
    [CrossRef]
  11. H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
    [CrossRef]
  12. H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.
  13. H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
    [CrossRef]
  14. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, L. Hesselink, “Cross-talk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11, 1820–1835 (1994).
    [CrossRef]
  15. J. E. Ford, Y. Fainman, S. H. Lee, “Reconfigurable array interconnection by photorefractive correlation,” Appl. Opt. 33, 5363–5377 (1994).
    [CrossRef] [PubMed]
  16. J. L. Gimlett, N. K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–895 (1989).
    [CrossRef]
  17. E. L. Goldstein, L. Eskildsen, A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, 657–660 (1994).
    [CrossRef]

2000

1999

N. Wada, K. Kitayama, “A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection,” J. Lightwave Technol. 17, 1758–1765 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

1998

1997

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

1994

1992

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
[CrossRef]

1990

J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
[CrossRef]

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

1989

J. L. Gimlett, N. K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–895 (1989).
[CrossRef]

1988

1986

P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
[CrossRef]

1985

Y. T. Mazurenko, “Detection and reconstruction of ultrashort pulses by interference of spectrally dispersed light,” Sov. J. Quantum Electron. 15, 815–818 (1985).
[CrossRef]

1984

Y. T. Mazurenko, “Interference of spectrally dispersed light,” Opt. Spectrosc. (USSR) 56, 357 (1984).

Aharoni, A.

Amano, C.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Bashaw, M. C.

Chang, C.-C.

Cheung, N. K.

J. L. Gimlett, N. K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–895 (1989).
[CrossRef]

Elrefaie, A. F.

E. L. Goldstein, L. Eskildsen, A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, 657–660 (1994).
[CrossRef]

Eskildsen, L.

E. L. Goldstein, L. Eskildsen, A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, 657–660 (1994).
[CrossRef]

Fainman, Y.

Ford, J. E.

Gimlett, J. L.

J. L. Gimlett, N. K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems,” J. Lightwave Technol. 7, 888–895 (1989).
[CrossRef]

Goh, T.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Goldstein, E. L.

E. L. Goldstein, L. Eskildsen, A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, 657–660 (1994).
[CrossRef]

Griffin, R. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
[CrossRef]

Heanue, J. F.

Heritage, J. P.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
[CrossRef] [PubMed]

Hesselink, L.

Himeno, A.

J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
[CrossRef]

Hirano, A.

H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Inoue, Y.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ishii, M.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Ishii, T.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Jackson, D. A.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
[CrossRef]

Kitayama, K.

Kurokawa, T.

H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Lee, S. H.

Mazurenko, Y. T.

Y. T. Mazurenko, “Detection and reconstruction of ultrashort pulses by interference of spectrally dispersed light,” Sov. J. Quantum Electron. 15, 815–818 (1985).
[CrossRef]

Y. T. Mazurenko, “Interference of spectrally dispersed light,” Opt. Spectrosc. (USSR) 56, 357 (1984).

Naganuma, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

Nishikido, J.

J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
[CrossRef]

Okamoto, K.

H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Okuno, M.

J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
[CrossRef]

Prucnal, P. R.

P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
[CrossRef]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, J. P. Heritage, J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett. 13, 300–302 (1988).
[CrossRef] [PubMed]

Sampson, D. D.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
[CrossRef]

Santoro, M. A.

P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
[CrossRef]

Sardesai, H. P.

Sato, K.

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Sehgal, S. K.

P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
[CrossRef]

Takenouchi, H.

H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Tsuda, H.

H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, “Performance analysis of a dispersion compensator using arrayed-waveguide gratings,” J. Lightwave Technol. 18, 1139–1147 (2000).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Wada, N.

Walkup, J. F.

Weiner, A. M.

Appl. Opt.

Electron. Lett.

J. Nishikido, M. Okuno, A. Himeno, “4.65 Gbit/s optical four-bit pattern matching using silica-based waveguide circuit,” Electron. Lett. 26, 1766–1767 (1990).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, M. Ishii, “Time–space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett. 33, 1890–1891 (1997).
[CrossRef]

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Spectral encoding of 10 Gbit/s femtosecond pulses using a high resolution arrayed-waveguide grating,” Electron. Lett. 35, 1186–1188 (1999).
[CrossRef]

IEEE J. Sel. Areas Commun.

P. R. Prucnal, M. A. Santoro, S. K. Sehgal, “Ultrafast all-optical synchronous multiple access fiber networks,” IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).
[CrossRef]

IEEE Photon. Technol. Lett.

R. A. Griffin, D. D. Sampson, D. A. Jackson, “Optical phase coding for code-division multiple access networks,” IEEE Photon. Technol. Lett. 4, 1401–1404 (1992).
[CrossRef]

E. L. Goldstein, L. Eskildsen, A. F. Elrefaie, “Performance implications of component crosstalk in transparent lightwave networks,” IEEE Photon. Technol. Lett. 6, 657–660 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Lett.

Opt. Spectrosc. (USSR)

Y. T. Mazurenko, “Interference of spectrally dispersed light,” Opt. Spectrosc. (USSR) 56, 357 (1984).

Sov. J. Quantum Electron.

Y. T. Mazurenko, “Detection and reconstruction of ultrashort pulses by interference of spectrally dispersed light,” Sov. J. Quantum Electron. 15, 815–818 (1985).
[CrossRef]

Other

H. Tsuda, H. Takenouchi, T. Ishii, K. Okamoto, T. Goh, K. Sato, A. Hirano, T. Kurokawa, C. Amano, “Photonic spectral encoder/decoder using an arrayed-waveguide grating for coherent optical code division multiplexing,” in WDM Components, D. A. Nolan, ed., Vol. 29 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 206–212.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dispersive element integrated upon a substrate by PLC technology. The input temporal waveform f in(t) is distributed to each waveguide of the arrayed waveguide with an envelope amplitude distribution of w t . The number of waveguides is usually 100–1000, and the time delay between adjacent waveguides is 0.1–1.0 ps. The spatiotemporal waveform, f out(x, t), is generated on the output of the arrayed waveguide. The output waveform moves at a velocity of 1/β in the x direction.

Fig. 2
Fig. 2

(a) Configuration of the photonic encoder (multiplexer) of the three-dimensional arrangement. The dispersive elements are used for converting a temporal waveform into a spatiotemporal waveform and vice versa. Each encoding signal and reference signal pair has a different angle of intersection. A computer-generated hologram instead of a recording optical system may be used. The encoded signal is generated by illumination of the hologram with the corresponding spatiotemporal reference signal. (b) Configuration of the photonic decoder (demultiplexer). The light diffracted by illumination of the spatiotemporal signal includes correlation and convolution waveforms between the input signal and the recorded signals. If we use an optical orthogonal signal, the autocorrelation waveform will be diffracted to directions determined by the recording orientation.

Fig. 3
Fig. 3

(a) Schematic of the proposed photonic encoder for the two-dimensional arrangement. Several dispersive elements are integrated upon the same substrate. g k (x, t) is a spatiotemporal reference waveform, h k (x) is an orthogonal waveform recorded in the hologram, and L f is the focal length of the lenses. (b) Schematic configuration of the proposed photonic decoder of the two-dimensional arrangement. e k (x′, t) is the diffracted spatiotemporal correlation waveform. The light near the center of the waveform (correlation peak) is extracted by optical gating and is discriminated for determination of the signal level.

Fig. 4
Fig. 4

Time-domain synchronous OCDM system.

Fig. 5
Fig. 5

Timing chart of the OCDM system. ΔT is the pulse width, T A is the time slot duration for one pulse, T B is the time slot duration for one bit, and T C is the guard time between adjacent bits.

Fig. 6
Fig. 6

Profiles of (a) the time window and (b) the spectral window. T B , time-slot duration for 1 bit; B W , bandwidth of the spectral window; ν 0, the center frequency.

Fig. 7
Fig. 7

(a) Simulated waveform for the orthogonal code of h 4′ = (1, -1, -1, 1, 1, -1, -1, 1). (b) Correlation waveform at output port 4 for the input orthogonal code of h 4′ that corresponds to the autocorrelation h 4′ ★ h 4′* = (0, 1, -2, -1, 4, 1, -6, -1, 8, -1, -6, 1, 4, -1, -2, 1, 0). (c) Correlation waveform at output port 4 for the input orthogonal code of h 8′ = (1, -1, -1, 1, -1, 1, 1, -1) that corresponds to the cross correlation, h 8′ ★ h 4′* = (0, -1, 2, 1, -4, 1, 2, -1, 0, 1, -2, -1, 4, -1, -2, 1, 0).

Fig. 8
Fig. 8

Power penalties as functions of the width of the spectral window. The bit-error rate was fixed at 10-9 for the calculation. When a power penalty of 2 dB is acceptable, the required spectral bandwidths are 1.6, 2.4, and 3.3 THz for two, four, and eight channels, respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

foutx, twtxfinx-t/β,
βmpν0,
hkx=l=1N hk,lpx-lTA,
gkx, twtx-k-1γg0x-k-1γ-t/β×exp2πiν0t,
γ=Lfθ,
Tνx=A0+A1k=1NHkνxHk*νx+G0νxG0*νx+A1k=1NHkνxG0*νxexp2πikγνx+G0νxHk*νxexp-2πikγνx,
η k=1N WsνsHkνxG0νx * WtνxG0*νx×exp2πiγνxexp2πiνxt/βexp2πiν0t,
η k=1Nwtxhkx+γ+tβ * wsxexp2πiν0tη k=1N hkx+γ+tβexp2πiν0t,
η k=1N hktexp2πiν0t.
ekx, t=ηl=1NWsνxG0νxHlνx * Wtνx×Hk*νxexp-2πiνxk-1γ+t/β×exp2πiν0tη l=1N hlx-k-1γ-t/β hk*x-k-1γ-t/βexp2πiν0t,
η l=1N hlt  hk*texp2πiν0t.
SNR2nmLmLfν0Nγc,
Tc>TA/2.
H8=h1h2h3h4h5h6h7h8=1111111110101010110011001001100111110000101001011100001110010110.
QIsσ2+4εIs21/2.
δP=10 log10Is/Is,0=-5 log101-4εQ2.
δP=-5 log101-4NεQ2.

Metrics