Abstract

A novel, to our knowledge, adaptive optical imaging system for high-resolution retinal imaging is described. The system is based on a feedback interferometer, in which two-dimensional output fringe intensity from a Mach–Zehnder interferometer with large radial shear is fed back, with the help of a video projector connected with a CCD camera, to an optically addressed phase-only liquid-crystal spatial light modulator. Experiments to verify the system performance have been conducted by use of an artificial eye consisting of a lens, an aberration plate, and a resolution test target. We observed that an image of the test target (mimicking a retina) blurred by the aberration plate (mimicking ocular aberrations) was successfully restored immediately after our adaptive optics system was activated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990).
    [CrossRef] [PubMed]
  2. J. M. Geary, “Wavefront sensors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 123–150.
  3. R. E. Aldrich, “Deformable mirror wavefront correctors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 151–197.
  4. R. K. Tyson, “Introduction,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 1–27.
  5. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  6. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  7. D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.
  8. D. T. Miller, “Adaptive optics in retinal microscopy and vision,” in Handbook of Optics, Volume III, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 2001), Chap. 10.
  9. L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
    [CrossRef]
  10. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  11. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  12. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
    [CrossRef]
  13. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,”Opt. Express 8, 631–643 (2001), http: www.opticsexpress.org .
    [CrossRef] [PubMed]
  14. P. Artal, R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989).
    [CrossRef] [PubMed]
  15. S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
    [CrossRef]
  16. R. Navarro, E. Moreno-Barriuso, S. Bará, T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
    [CrossRef]
  17. I. Iglesias, P. Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25, 1804–1806 (2000).
    [CrossRef]
  18. For example, G. D. Love, “Liquid crystal adaptive optics,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 273–285.
  19. T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000).
    [CrossRef]
  20. T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
    [CrossRef]
  21. T. Shirai, T. H. Barnes, “Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device,” J. Opt. Soc. Am. A 19, 369–377 (2002).
    [CrossRef]
  22. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
    [CrossRef] [PubMed]
  23. F. Vargas-Martín, P. M. Prieto, P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15, 2552–2562 (1998).
    [CrossRef]
  24. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 4.4.
    [CrossRef]
  25. For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
    [CrossRef]
  26. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
    [CrossRef]
  27. F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
    [CrossRef] [PubMed]
  28. N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
    [CrossRef] [PubMed]
  29. G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
    [CrossRef] [PubMed]
  30. J.-M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmic Physiol. Opt. 9, 53–60 (1989).
    [CrossRef] [PubMed]
  31. P. Artal, R. Navarro, “Simultaneous measurement of two-point-spread functions at different locations across the human fovea,” Appl. Opt. 31, 3646–3656 (1992).
    [CrossRef] [PubMed]
  32. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  33. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  34. H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  35. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  36. For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980).
    [CrossRef] [PubMed]
  37. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  38. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 7.1.3.

2002

2001

2000

1999

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

L. Zhu, P. Sun, D. Bartsch, W. R. Freeman, Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168–176 (1999).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

1998

1997

1996

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
[CrossRef]

S. Marcos, R. Navarro, P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996).
[CrossRef]

1992

1990

H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990).
[CrossRef] [PubMed]

1989

1986

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

1980

For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980).
[CrossRef] [PubMed]

1979

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

1977

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Aldrich, R. E.

R. E. Aldrich, “Deformable mirror wavefront correctors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 151–197.

Aragón, J. L.

Artal, P.

Babcock, H. W.

H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990).
[CrossRef] [PubMed]

Bará, S.

Barnes, T. H.

T. Shirai, T. H. Barnes, “Adaptive restoration of a partially coherent blurred image using an all-optical feedback interferometer with a liquid-crystal device,” J. Opt. Soc. Am. A 19, 369–377 (2002).
[CrossRef]

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000).
[CrossRef]

For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
[CrossRef]

Bartsch, D.

Bille, J. F.

Bradley, A.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Chen, L.

Cox, I. G.

Delori, F. C.

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Dreher, A. W.

Ducrey, N. M.

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

Eiju, T.

For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
[CrossRef]

Fainman, Y.

Fernández, E. J.

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Freeman, W. R.

Geary, J. M.

J. M. Geary, “Wavefront sensors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 123–150.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 7.1.3.

Gorrand, J.-M.

J.-M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmic Physiol. Opt. 9, 53–60 (1989).
[CrossRef] [PubMed]

Gragoudas, E. S.

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Guirao, A.

Hara, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Haskell, T. G.

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000).
[CrossRef]

Hofer, H.

Igasaki, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Iglesias, I.

Inoue, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Kobayashi, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Liang, J.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.

Love, G. D.

For example, G. D. Love, “Liquid crystal adaptive optics,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 273–285.

Mancebo, T.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 4.4.
[CrossRef]

Marcos, S.

Matsuda, K.

For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
[CrossRef]

Miller, D. T.

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.

D. T. Miller, “Adaptive optics in retinal microscopy and vision,” in Handbook of Optics, Volume III, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 2001), Chap. 10.

Moreno-Barriuso, E.

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Mukohzaka, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Navarro, R.

Porter, J.

Prieto, P. M.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.

Shirai, T.

Singer, B.

Sliney, D. H.

For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980).
[CrossRef] [PubMed]

Sun, P.

Thibos, L. N.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Toyoda, H.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Tyson, R. K.

R. K. Tyson, “Introduction,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 1–27.

van Blokland, G. J.

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

van Norren, D.

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

Vargas-Martín, F.

Weinreb, R. N.

Williams, D. R.

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,”Opt. Express 8, 631–643 (2001), http: www.opticsexpress.org .
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.

Wolborsht, M. L.

For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980).
[CrossRef] [PubMed]

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 4.4.
[CrossRef]

Yamauchi, Y.

Yoon, G. Y.

Yoshida, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Zhu, L.

Appl. Opt.

Arch. Ophthalmol.

F. C. Delori, E. S. Gragoudas, R. Francisco, R. C. Pruett, “Monochromatic ophthalmoscopy and fundus photography. The normal fundus,” Arch. Ophthalmol. 95, 861–868 (1977).
[CrossRef] [PubMed]

N. M. Ducrey, F. C. Delori, E. S. Gragoudas, “Monochromatic ophthalmoscopy and fundus photography. II. The pathological fundus,” Arch. Ophthalmol. 97, 288–293 (1979).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nature

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

J.-M. Gorrand, “Reflection characteristics of the human fovea assessed by reflecto-modulometry,” Ophthalmic Physiol. Opt. 9, 53–60 (1989).
[CrossRef] [PubMed]

Opt. Commun.

T. Shirai, T. H. Barnes, T. G. Haskell, “Real-time restoration of a blurred image with a liquid-crystal adaptive-optics system based on all-optical feedback interferometry,” Opt. Commun. 188, 275–282 (2001).
[CrossRef]

For example, T. H. Barnes, T. Eiju, K. Matsuda, “High resolution adaptive optics using an interference phase loop,” Opt. Commun. 132, 494–502 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, T. Hara, “High efficiency electrically-addressable phase-only spatial light modulator,” Opt. Rev. 6, 339–344 (1999).
[CrossRef]

Optom. Vis. Sci.

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef] [PubMed]

Science

H. W. Babcock, “Adaptive optics revisited,” Science 249, 253–257 (1990).
[CrossRef] [PubMed]

Vision Res.

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

For example, D. H. Sliney, M. L. Wolborsht, “Safety standards and measurement techniques for high intensity light sources,” Vision Res. 20, 1133–1141 (1980).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Sec. 7.1.3.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, England, 1995), Sec. 4.4.
[CrossRef]

J. M. Geary, “Wavefront sensors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 123–150.

R. E. Aldrich, “Deformable mirror wavefront correctors,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 151–197.

R. K. Tyson, “Introduction,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 1–27.

D. R. Williams, J. Liang, D. T. Miller, A. Roorda, “Wavefront sensing and compensation for the human eye,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 287–310.

D. T. Miller, “Adaptive optics in retinal microscopy and vision,” in Handbook of Optics, Volume III, 2nd ed. M. Bass, ed. (McGraw-Hill, New York, 2001), Chap. 10.

For example, G. D. Love, “Liquid crystal adaptive optics,” in Adaptive Optics Engineering Handbook, R. K. Tyson, ed. (Marcel Dekker, New York, 2000), pp. 273–285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical arrangements for (a) retinal imaging and (b) adaptive optics. Abbreviations are defined in the text.

Fig. 2
Fig. 2

(a) Image of a USAF test target captured by CCD1 and (b) an interference fringe pattern captured by CCD2 in the case in which AP was removed from the artificial eye and the electric supply to the PAL-SLM was suspended.

Fig. 3
Fig. 3

Images of a USAF test target captured by CCD1 (a) without and (c) with adaptive optics, and interference fringe patterns captured by CCD2 (b) without and (d) with adaptive optics. These photographs were taken after AP was set in place and the electric supply to the PAL-SLM was resumed.

Fig. 4
Fig. 4

Images of a USAF test target captured by CCD1 (a) without and (c) with adaptive optics, and interference fringe patterns captured by CCD2 (b) without and (d) with adaptive optics in the case in which another stronger aberration plate was set in place.

Fig. 5
Fig. 5

Unfolded geometry for the analysis of the system-driving light.

Fig. 6
Fig. 6

Unfolded geometry for the analysis of the image-bearing light.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

UΦρΦ, ω=CaρΦ, ωa-ρΦ, ω,
ARρΦ, ω=AR0a*ρΦ, ωa*-ρΦ, ω1/2,
Ueρe, ω=U0aρe, ωexp-i k2feρe2,
URρR, ω=ki2πfe  Ueρe, ω×expi k2feρR-ρe2d2ρe,
URρR, ω=ki2πfe U0 expi k2feρR2× aρe, ωexp-i kfeρR·ρed2ρe.
URρR, ω|AP:uniform=2πfeik U0 expi k2fe ρR2δρR,
URρR, ω=R0URρR, ω.
UEρE, ω=aρE, ωexp-i k2fe ρE2ki2πfe× URρR, ω×expi k2feρE-ρR2d2ρR.
UEρE, ω=U0R0aρE, ωki4πfe  aρe, ω×exp-i k4feρE+ρe2d2ρe.
ki4πfe  aρe, ωexp-i k4feρE+ρe2d2ρea-ρE, ω.
UEρE, ω=U0R0aρE, ωa-ρE, ω.
Uiρi, ω=ki2πf  UEρE, ω×exp-i kfρi·ρEd2ρE
UΦρΦ, ω=ki2πf  Uiρi, ω×exp-i kf ρΦ·ρid2ρi,
UΦρΦ, ω=-U0R0aρΦ, ωa-ρΦ, ω.
UΦρΦ, ω=CaρΦ, ωa-ρΦ, ω.
WSρS1, ρS2, ω=S0ρS1, ωδρS1-ρS2,
WFρF1, ρF2, ω=k2πfS2  d2ρS1  d2ρS2×WSρS1, ρS2, ωexp-i kfS×ρF2·ρS2-ρF1·ρS1,
Weρe1, ρe2, ω=k2πfe2  d2ρF1  d2ρF2×WFρF1, ρF2, ωexp-i k2feρe1-ρF12-ρe2-ρF22.
Weρe1, ρe2, ω=k2πfS2  S0ρS1, ω×exp-i kfSρe2-ρe1·ρS1d2ρS1,
Weρe1, ρe2, ω=a*ρe1, ωaρe2, ωexp-i k2feρe22-ρe12k2πfS2  S0ρS1, ω×exp-i kfSρe2-ρe1 · ρS1d2ρS1.
WRρR1, ρR2, ω=O*ρR1, ωOρR2, ωk2πfe2× d2ρe1  d2ρe2Weρe1, ρe2, ω×exp-i k2feρR1-ρe12-ρR2-ρe22.
WEρE1, ρE2, ω=a*ρE1, ωaρE2, ω×exp-i k2feρE22-ρE12×k2πfe2  d2ρR1  d2ρR2×WRρR1, ρR2, ωexp-i k2feρE1-ρR12-ρE2-ρR22.
WEρE1, ρE2, ω=a*ρE1, ωaρE2, ωk2πfe4k2πfS2× d2ρR1  d2ρR2  d2ρS1×S0ρS1, ωO*ρR1, ωOρR2, ω×exp-i kfeρR12-ρR22×expi kfeρE1·ρR1-ρE2·ρR2× a*ρe1, ωexpi kfeρR1+fefS ρS1·ρe1d2ρe1× aρe2, ωexp-i kfeρR2+fefS ρS1·ρe2d2ρe2.
WEρE1, ρE2, ω=a*ρE1, ωaρE2, ωk2πfe4k2πfS2× d2ρR1  d2ρR2  d2ρS1×S0ρS1, ωO-fefSρS1, ω2×exp-i kfeρR12-ρR22×expi kfeρE1 · ρR1-ρE2 · ρR2×  a*ρe1, ωexpi kfeρR1+fefS ρS1 · ρe1d2ρe1× aρe2, ωexp-i kfeρR2+fefS ρS1 · ρe2d2ρe2.
WEρE1, ρE2, ω=a*ρE1, ωaρE2, ωk2πfS2× d2ρS1S0ρS1, ω×O-fefSρS1, ω2×-ki4πfe  a*ρe1, ω×expi kfSρS1·ρe1×expi k4feρE1+ρe12d2ρe1×ki4πfe  aρe2, ω×exp-i kfS ρS1·ρe2×exp-i k4feρE2+ρe22d2ρe2.
-ki4πfe  a*ρe1, ωexpi kfS ρS1 · ρe1×expi k4feρE1+ρe12d2ρe1a*-ρE1, ωexp-i kfS ρE1 · ρS1,
ki4πfe  aρe2, ωexp-i kfSρS1 · ρe2×exp-i k4feρE2+ρe22d2ρe2a-ρE2, ωexpi kfS ρE2 · ρS1,
WEρE1, ρE2, ω=a*ρE1, ωaρE2, ωa*-ρE1, ω×a-ρE2, ωk2πfS2× S0ρS1, ωO-fefSρS1, ω2×expi kfSρE2-ρE1 · ρS1d2ρS1.
WΦρΦ1, ρΦ2, ω=WE-ρΦ1, -ρΦ2, ω.
WΦρΦ1, ρΦ2, ω=AT*ρΦ1, ωATρΦ2, ω×WE-ρΦ1, -ρΦ2, ω,
ATρΦ, ω=AT0a*ρΦ, ωa*-ρΦ, ω,
WΦρΦ1, ρΦ2, ω=k2πfS2  d2ρS1S0ρS1, ω×O-fefS ρS1, ω2×exp-i kfSρΦ2-ρΦ1 · ρS1.
WIρI1, ρI2, ω=k2πfI2  d2ρΦ1  d2ρΦ2×WΦρΦ1, ρΦ2, ω×exp-i kfIρI2 · ρΦ2-ρI1·ρΦ1.
WIρI1, ρI2, ω=fSfI2S0-fSfIρI1, ωOfefI ρI1, ω2×δfSfIρI2-ρI1.
SIρI, ω=fSfI2S0-fSfI ρI, ωOfefI ρI, ω2.

Metrics