Abstract

We report on a quantitative comparison between the single-source and the dual-interfering-source configurations for the detection of fluorescent heterogeneities embedded in a piecewise highly scattering homogeneous fluorescent background. The study is based on simulations with analytical solutions of the frequency-domain fluorescent diffuse photon density waves and practical signal-to-noise ratio considerations. Results show that dual-interfering sources outperform single-source techniques for the detection of heterogeneities in terms of fluorophore concentration and lifetime contrast. To detect the same inhomogeneity, less concentration and lifetime contrast is required with dual-interfering sources.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
    [CrossRef]
  2. J. Ripoll, M. Nieto-Vesperinas, R. Carminati, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999).
    [CrossRef]
  3. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  4. B. Chance, “Near-infrared optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
    [CrossRef] [PubMed]
  5. J. Basilion, “Current and future technologies for breast cancer imaging,” Breast Cancer Res. 3, 14–16 (2001).
    [CrossRef] [PubMed]
  6. D. Kopans, “Screening for breast-cancer and mortality reduction among women 40–49 years of age,” Cancer 74, Suppl. S, 311–322 (1994).
    [CrossRef]
  7. R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
    [CrossRef] [PubMed]
  8. R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
    [CrossRef] [PubMed]
  9. J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
    [CrossRef] [PubMed]
  10. K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
    [CrossRef] [PubMed]
  11. D. Hawrys, E. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000).
    [CrossRef]
  12. V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–47 (2001).
    [CrossRef] [PubMed]
  13. M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
    [CrossRef] [PubMed]
  14. J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  15. V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef]
  16. B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
    [CrossRef] [PubMed]
  17. A. Knuttel, J. Schmitt, J. Knutson, “Spatial localization of absorbing bodies by interfering diffuse photon-density waves,” Appl. Opt. 32, 381–389 (1993).
    [CrossRef]
  18. M. Erickson, J. Reynolds, K. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
    [CrossRef]
  19. A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
    [CrossRef]
  20. M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
    [CrossRef]
  21. X. Intes, B. Chance, M. Holboke, A. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  22. X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  23. S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
    [CrossRef] [PubMed]
  24. X. Li, B. Chance, A. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
    [CrossRef]
  25. R. Haskell, L. Svaasand, T. T. Tsay, Tc. Feng, M. McAdams, B. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  26. Y. Chen, C. Mu, X. Intes, B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  27. T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
    [CrossRef] [PubMed]
  28. S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
    [CrossRef]
  29. D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
    [CrossRef] [PubMed]
  30. S. Morgan, K. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2001), http://www.opticsexpress.org .
    [CrossRef]
  31. X. Intes, V. Ntziachristos, A. Yodh, B. Chance, “Analytical model for phased-array diffuse optical tomography,” Opt. Express 9, 2–14 (2002), http://www.opticsexpress.org .
    [CrossRef]

2002 (1)

2001 (8)

Y. Chen, C. Mu, X. Intes, B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. Morgan, K. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2001), http://www.opticsexpress.org .
[CrossRef]

X. Intes, B. Chance, M. Holboke, A. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

B. Chance, “Near-infrared optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

J. Basilion, “Current and future technologies for breast cancer imaging,” Breast Cancer Res. 3, 14–16 (2001).
[CrossRef] [PubMed]

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[CrossRef] [PubMed]

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–47 (2001).
[CrossRef] [PubMed]

2000 (7)

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

D. Hawrys, E. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
[CrossRef] [PubMed]

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

1999 (3)

J. Ripoll, M. Nieto-Vesperinas, R. Carminati, “Spatial resolution of diffuse photon density waves,” J. Opt. Soc. Am. A 16, 1466–1476 (1999).
[CrossRef]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

1998 (2)

S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

X. Li, B. Chance, A. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
[CrossRef]

1997 (1)

1996 (2)

X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

1994 (3)

R. Haskell, L. Svaasand, T. T. Tsay, Tc. Feng, M. McAdams, B. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

D. Kopans, “Screening for breast-cancer and mortality reduction among women 40–49 years of age,” Cancer 74, Suppl. S, 311–322 (1994).
[CrossRef]

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

1993 (3)

A. Knuttel, J. Schmitt, J. Knutson, “Spatial localization of absorbing bodies by interfering diffuse photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef]

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

’tHoof, G.

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Achifelu, S.

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Achilefu, S.

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Barnes, R.

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Basilion, J.

J. Basilion, “Current and future technologies for breast cancer imaging,” Breast Cancer Res. 3, 14–16 (2001).
[CrossRef] [PubMed]

Becker, A.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Boas, D.

X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Bugaj, J.

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Buler, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Carminati, R.

Cerussi, A.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Chance, B.

X. Intes, V. Ntziachristos, A. Yodh, B. Chance, “Analytical model for phased-array diffuse optical tomography,” Opt. Express 9, 2–14 (2002), http://www.opticsexpress.org .
[CrossRef]

X. Intes, B. Chance, M. Holboke, A. Yodh, “Interfering diffusive photon-density waves with an absorbing-fluorescent inhomogeneity,” Opt. Express 8, 223–231 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

B. Chance, “Near-infrared optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–47 (2001).
[CrossRef] [PubMed]

Y. Chen, C. Mu, X. Intes, B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

X. Li, B. Chance, A. Yodh, “Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption,” Appl. Opt. 37, 6833–6844 (1998).
[CrossRef]

X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Chen, Y.

Colak, S.

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Cornell, K.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Corshow, R.

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Desmettre, T.

T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
[CrossRef] [PubMed]

Devoiselle, J.

T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
[CrossRef] [PubMed]

Dorshow, R.

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

Erickson, M.

Espinoza, J.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Feng, Tc.

Gurfinkel, M.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Gust, J.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Haskell, R.

Hawrys, D.

D. Hawrys, E. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

Hawrysz, D.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

He, L.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Holboke, M.

Hopcraqft, K.

S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Intes, X.

Kang, K.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Knutson, J.

A. Knuttel, J. Schmitt, J. Knutson, “Spatial localization of absorbing bodies by interfering diffuse photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef]

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Knuttel, A.

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

A. Knuttel, J. Schmitt, J. Knutson, “Spatial localization of absorbing bodies by interfering diffuse photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef]

Kopans, D.

D. Kopans, “Screening for breast-cancer and mortality reduction among women 40–49 years of age,” Cancer 74, Suppl. S, 311–322 (1994).
[CrossRef]

Lanning, R.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Li, X.

Licha, K.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Mahmood, U.

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Mayer, R.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

McAdams, M.

Moore, A.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Moore, T.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Mordon, S.

T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
[CrossRef] [PubMed]

Morgan, S.

S. Morgan, K. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7, 540–546 (2001), http://www.opticsexpress.org .
[CrossRef]

S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Mu, C.

Muggenburg, B.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Nikula, K.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Ntziachristos, V.

X. Intes, V. Ntziachristos, A. Yodh, B. Chance, “Analytical model for phased-array diffuse optical tomography,” Opt. Express 9, 2–14 (2002), http://www.opticsexpress.org .
[CrossRef]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–47 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

O’Leary, M.

X. Li, M. O’Leary, D. Boas, B. Chance, A. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

Oostveen, J.

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Pandey, R.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Papaioannou, D.

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

Pham, T.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Rajagopalan, R.

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

Ralston, W.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Reynolds, J.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

M. Erickson, J. Reynolds, K. Webb, “Comparison of sensitivity for single-source and dual-interfering-source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997).
[CrossRef]

Riefke, B.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Ripoll, J.

Schmitt, J.

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

A. Knuttel, J. Schmitt, J. Knutson, “Spatial localization of absorbing bodies by interfering diffuse photon-density waves,” Appl. Opt. 32, 381–389 (1993).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

Semmler, W.

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Sevick, E.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Sevick-Muraca, E.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

D. Hawrys, E. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Shah, N.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Snyder, P.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Somekh, M.

S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Svaasand, L.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

R. Haskell, L. Svaasand, T. T. Tsay, Tc. Feng, M. McAdams, B. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Tatman, D.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Thompson, A.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Tromberg, B.

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

R. Haskell, L. Svaasand, T. T. Tsay, Tc. Feng, M. McAdams, B. Tromberg, Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Troy, T.

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Tsay, T. T.

Tung, C. H.

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Waters, D.

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Webb, K.

Weissleder, R.

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Weng, J.

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Yodh, A.

Yong, K.

Acad. Radiol. (1)

B. Chance, “Near-infrared optical spectroscopy characterizes breast tissue hormonal and age status,” Acad. Radiol. 8, 209–210 (2001).
[CrossRef] [PubMed]

Appl. Opt. (3)

Breast Cancer Res. (2)

J. Basilion, “Current and future technologies for breast cancer imaging,” Breast Cancer Res. 3, 14–16 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, B. Chance, “Probing physiology and molecular function using optical imaging: applications to breast cancer,” Breast Cancer Res. 3, 41–47 (2001).
[CrossRef] [PubMed]

Cancer (1)

D. Kopans, “Screening for breast-cancer and mortality reduction among women 40–49 years of age,” Cancer 74, Suppl. S, 311–322 (1994).
[CrossRef]

Invest. Radiol. (1)

S. Achilefu, R. Corshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in-vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. Papaioannou, G. ’tHoof, S. Colak, J. Oostveen, “Detection limit in localizing objects hidden in turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1, 305–310 (1996).
[CrossRef] [PubMed]

J. Bugaj, S. Achifelu, R. Dorshow, R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in-vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt. 6, 122–133 (2001).
[CrossRef] [PubMed]

J. Lumin. (1)

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60–61, 281–286 (1994).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Biotechnol. (1)

R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Neoplasia (2)

B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Buler, “Non-invasive in-vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

D. Hawrys, E. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia 2, 388–417 (2000).
[CrossRef]

Opt. Eng. (1)

S. Morgan, M. Somekh, K. Hopcraqft, “Probabilistic method for phased array detection in scattering media,” Opt. Eng. 37, 1618–1626 (1998).
[CrossRef]

Opt. Express (4)

Photochem. Photobiol. (3)

M. Gurfinkel, A. Thompson, W. Ralston, T. Troy, A. Moore, T. Moore, J. Gust, D. Tatman, J. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. Mayer, D. Hawrysz, E. Sevick-Muraca, “Pharmokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. Reynolds, T. Troy, R. Mayer, A. Thompson, D. Waters, K. Cornell, P. Snyder, E. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, W. Semmler, “Hydrophylic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in-vivo characterization,” Photochem. Photobiol. 72, 392–398 (2000).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef]

B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location in tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. USA 90, 3423–3427 (1993).
[CrossRef] [PubMed]

Radiology (1)

R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316–333 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Knuttel, J. Schmitt, R. Barnes, J. Knutson, “Acousto-optic scanning and interfering photon density waves for precise localization of an absorbing (or fluorescent) body in a turbid medium,” Rev. Sci. Instrum. 64, 638–644 (1993).
[CrossRef]

Surv. Ophthalmol. (1)

T. Desmettre, J. Devoiselle, S. Mordon, “Fluorescent properties and metabolic features of Indocyanine Green (ICG) as related to angiography,” Surv. Ophthalmol. 45, 15–27 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometric setup for the simulation. The background (inhomogeneity) medium is characterized by the fluorophore concentration N 1 (N 2) and lifetime τ12).

Fig. 2
Fig. 2

Sources and detector configuration for the results of Fig. 3. The detectors in each case are off the null line of 0.25 cm on each side, respectively.

Fig. 3
Fig. 3

(a) Fractional amplitude and (b) phase difference for the configurations of Fig. 2. The results are shown by the dashed and solid curves which correspond to the configurations of Figs. 2(a) and 2(b), respectively.

Fig. 4
Fig. 4

Fractional amplitude and phased change versus fluorophore concentration and lifetime contrast: (a) and (b) the lifetime contrast is set to 1 (τ1 = τ2 = 1 ns); (c) and (d) the concentration contrast is set to 5 (N 2 = 0.5 µM). The legends on the graphs correspond to the radius of the spherical heterogeneities considered.

Fig. 5
Fig. 5

Contour plot of the (a)–(c) fractional amplitude and (b)–(d) phase difference for (a) and (b) a single-source system and (c) and (d) a phased-array system. The legends on the isocontours correspond to the radius of the inhomogeneity. The darker areas correspond to the parameter space where the perturbation is higher than the criteria used.

Fig. 6
Fig. 6

Contour plot of the (a) fractional amplitude and (b) phase difference for the phased-array configuration. The frequency modulation is set to 200 MHz and the lifetime ratio to 1 (τ1 = τ2 = 1 ns). The legends on the isocontours correspond to the radius of the inhomogeneity.

Fig. 7
Fig. 7

(a) Fractional amplitude and (b) phase difference versus the source modulation frequency. The legends on the curves correspond to lifetime contrast. The inhomogeneity radius is set to 0.2 cm with a concentration contrast of 5 (N 2 = 0.5 µM).

Tables (2)

Tables Icon

Table 1 Chromophore Optical Properties at λex and λem and Source Modulation Frequency

Tables Icon

Table 2 Quantum Yield η, Background Fluorophore Concentration N 1, Lifetime τ1, and Excitation Coefficients ε and ε f

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Φheteroflrrs, rd, ω, a=Φhomoflrrs, rd, ω+Φscflrrs, rd, ω, a =εq1η1N11-iωτ1 F1rs, rd, ω+εq2η2N21-iωτ2 F2rs, rd, ω, a,
Φheteroflrrs1, rs2, rd, ω, a=Φheteroflrrs1, rd, ω, a+Φheteroflrrs2, rd, ω, a,
A1nNA1, Ns-sa,σs-sa  n=1, 2,, k.
A2nNA2, Ns-sb, σs-sb  n=1, 2,, k.
A3nNA3, Nd-s, σd-s  n=1, 2,, k,

Metrics