Abstract

We investigate the utility of digital holographic interferometry for analyzing gravity-dependent mass transport phenomena as applicable to materials and life science research topics. Digital holography is useful for measurement of parameters that introduce phase changes in light traversing the material of interest, such as temperature or concentration variations in an aqueous environment. We have constructed, tested, and verified a compact, portable digital holographic monitor (DHM) suitable for characterization of transparent samples. It has proved useful for the study of systems such as protein crystal growth solutions and has been proposed for further application into studies involving microbial metabolism. The DHM is also sufficiently rugged for field operation in challenging environments as may be encountered in a spacecraft or industrial setting. We discuss some system capabilities and limitations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars, W. P. O. Juptner, “Digital recording and reconstruction of holograms in holographic interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
    [CrossRef] [PubMed]
  2. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  3. S. Schedin, G. Pedrini, H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853–2857 (2000).
    [CrossRef]
  4. R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
    [CrossRef]
  5. A. Stadelmaier, J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630–1632 (2000).
    [CrossRef]
  6. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal, M. E. Gusev, “Highly sensitive pulsed digital holography for built-in defect analysis with a laser excitation,” Appl. Opt. 40, 100–103 (2001).
    [CrossRef]
  7. S. Schedin, G. Pedrini, H. J. Tiziani, A. K. Aggarwal, “Comparative study of various endoscopes for pulsed digital holographic interferometry,” Appl. Opt. 40, 2692–2697 (2001).
    [CrossRef]
  8. S. D. Nicola, P. Ferraro, A. Finizio, G. Pierattini, “Correct-image reconstruction in the presence of severe anamorphism by means of digital holography,” Opt. Lett. 26, 974–976 (2001).
    [CrossRef]
  9. A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
    [CrossRef]
  10. D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
    [CrossRef] [PubMed]
  11. U. Schnars, T. M. Kreis, W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).
    [CrossRef]

2001 (3)

2000 (3)

1999 (1)

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

1997 (1)

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

1996 (1)

U. Schnars, T. M. Kreis, W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).
[CrossRef]

1994 (2)

Aggarwal, A. K.

Ferraro, P.

Finizio, A.

Gusev, M. E.

Howard, J.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Jenkins, G.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Juptner, W. P. O.

U. Schnars, T. M. Kreis, W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).
[CrossRef]

U. Schnars, W. P. O. Juptner, “Digital recording and reconstruction of holograms in holographic interferometry and shearography,” Appl. Opt. 33, 4373–4377 (1994).
[CrossRef] [PubMed]

Klaus, D.

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

Koszelak, S.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Kreis, T. M.

U. Schnars, T. M. Kreis, W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).
[CrossRef]

Kuznetsov, Y. G.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Lawson, G.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Malkin, A. J.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Massig, J. H.

McPherson, A.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Nicola, S. D.

Owen, R. B.

R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
[CrossRef]

Pedrini, G.

Pierattini, G.

Schedin, S.

Schnars, U.

Simske, S.

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

Stadelmaier, A.

Stodieck, L.

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

Tiziani, H. J.

Todd, P.

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

Wells, M.

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

Zozulya, A. A.

R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
[CrossRef]

Appl. Opt. (4)

J. Cryst. Growth (1)

A. McPherson, A. J. Malkin, Y. G. Kuznetsov, S. Koszelak, M. Wells, G. Jenkins, J. Howard, G. Lawson, “The effects of microgravity on protein crystallization: evidence for concentration gradients around growing crystals,” J. Cryst. Growth 196, 572–586 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microbiology (1)

D. Klaus, S. Simske, P. Todd, L. Stodieck, “Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms,” Microbiology 143 (2), 449–455 (1997).
[CrossRef] [PubMed]

Opt. Eng. (2)

U. Schnars, T. M. Kreis, W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).
[CrossRef]

R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Line drawing of the basic optical layout for the DHM portable unit. Fiber optics and lenses are each held by a Newport P100Ai 1-in. (2.54-cm) optical mount on a Melles-Griot Model 9037 riser that slides as required along a Melles-Griot Model 9023 6-in. (15-cm) e*z*Trac optical rail (four mounts, four risers, and two rails). The thermoelectric and sample are mounted on another 9037 riser on a 6-in. rail. The C-mount enclosed beam splitter is mounted on either a Newport 481-A lockable rotation table or a Melles-Griot 07 TTC 501 prism tilt table with lockable rotation. The Pulnix TM-9701 progressive scan CCD camera is held by two Melles-Griot 9039 90° adapters that move along a 6-in. rail as required for horizontal alignment. Two Melles-Griot 9022 2.5-in. (6.4-cm) rails are vertically attached to each 90° adapter, and a Melles-Griot 9035 carrier is attached to each vertical rail. The carriers move vertically as required to further align the CCD camera.

Fig. 2
Fig. 2

Optical components are individually encased. The system is normally operated in this configuration, which protects the optics while still allowing the user to adjust the recombining beam splitter. The user can also set a desired sample temperature, and the controller maintains the sample baseplate at that set point.

Fig. 3
Fig. 3

Interior covers are removed, revealing the fiber beam splitter and associated collimation optics, the sample baseplate, the sample controller, and the CCD camera.

Fig. 4
Fig. 4

DHM graphic user interface.

Fig. 5
Fig. 5

Phase map reconstructed from a double-exposure holographic interferogram.

Fig. 6
Fig. 6

Three-dimensional representation of a reconstructed phase map.

Tables (2)

Tables Icon

Table 1 Lysozyme Concentration Change (dc) Comparison

Tables Icon

Table 2 Saline Solution Concentration Difference Comparison

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Eir, z=0expiki · r.
Er expikr · r,
Ir=Ei expiki · r+Er expikr · r2 =|Ei|2+|Er|2+EiEr* expiK · r+Ei*Er exp-iK · r,
ϕr, t=knr, tΔd=2πλ nΔd.
Δϕ=kΔdnr, t1-nr, t2=kΔdδn.
y=x2ymaxl2
ϕ=kn-1d=2πλn-1d.
ϕ2πdλn-11+12 θ2=2πdλn-11+2x2ymax2l4.
Δϕ4πdλn-1x2ymax2l4.
Δϕ8πdλn-1x0ymax2l4x-x0.
dϕdc=kd dndc.

Metrics