Abstract

In addition to a conventional phase α the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase α and the amplitude Zb are kept at 3π/2 and π, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time.

© 2002 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription