Abstract

The application of an optical circulator is demonstrated for an in-line-type lidar. The lidar’s transmitter and receiver are installed in a telescope. The optical circulator of interest here can separate the transmitting laser beam and the echo lights on the same optical axis. It can also divide the echo lights simultaneously into orthogonally polarized components. An insertion loss of 2.2 dB and isolation of >60 dB for the developed optical circulator are obtained in a laser-transmitting situation. This optical circulator makes it possible to measure the polarization ratio caused by cloud phases with a narrow field of view in an in-line-type lidar operation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  2. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973).
    [CrossRef] [PubMed]
  3. J. S. Ryan, S. R. Pal, A. I. Carswell, “Laser backscattering from dense water-droplet clouds,” J. Opt. Soc. Am. 69, 60–67 (1979).
    [CrossRef]
  4. K. Sassen, R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25, 1450–1459 (1986).
    [CrossRef] [PubMed]
  5. M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
    [CrossRef]
  6. G. Zaccanti, P. Bruscaglioni, M. Gurioli, P. Sansoni, “Laboratory simulations of lidar returns from clouds: experimental and numerical results,” Appl. Opt. 32, 1590–1597 (1993).
    [CrossRef] [PubMed]
  7. P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
    [CrossRef]
  8. M Gai, M. Gurioli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Laboratory simulations of lidar returns from clouds,” Appl. Opt. 35, 5435–5442 (1996).
    [CrossRef] [PubMed]
  9. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  10. N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).
  11. C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 3–6.
    [CrossRef]
  12. H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
    [CrossRef]
  13. P. C. Fletcher, D. L. Weisman, “Circulator for optical radar systems,” Appl. Opt. 4, 867–873 (1965).
    [CrossRef]
  14. W. B. Ribbens, “An optical circulator,” Appl. Opt. 4, 1037–1038 (1965).
    [CrossRef]
  15. J. F. Dillon, “Origin and uses of the Faraday rotation in magnetic crystals,” J. Appl. Phys. 39, 922–929 (1968).
    [CrossRef]
  16. H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
    [CrossRef]
  17. H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
    [CrossRef]
  18. M. Shirasaki, H. Kuwahara, T. Obokata, “Compact polarization-independent optical circulator,” Appl. Opt. 20, 2683–2687 (1981).
    [CrossRef] [PubMed]
  19. M. Koga, T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
    [CrossRef]
  20. Y. Fuji, “High-isolation polarization-independent quasi-optical circulator,” J. Lightwave. Technol. 10, 1226–1229 (1992).
    [CrossRef]
  21. Y. Fuji, “High-isolation polarization-insensitive N-port optical circulator,” Appl. Opt. 36, 1573–1575 (1997).
    [CrossRef]

1997 (1)

1996 (1)

1995 (2)

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
[CrossRef]

1993 (1)

1992 (2)

M. Koga, T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
[CrossRef]

Y. Fuji, “High-isolation polarization-independent quasi-optical circulator,” J. Lightwave. Technol. 10, 1226–1229 (1992).
[CrossRef]

1991 (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

1990 (1)

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

1986 (1)

1981 (1)

1979 (2)

J. S. Ryan, S. R. Pal, A. I. Carswell, “Laser backscattering from dense water-droplet clouds,” J. Opt. Soc. Am. 69, 60–67 (1979).
[CrossRef]

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

1978 (2)

H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

1973 (1)

1968 (1)

J. F. Dillon, “Origin and uses of the Faraday rotation in magnetic crystals,” J. Appl. Phys. 39, 922–929 (1968).
[CrossRef]

1965 (2)

Bruscaglioni, P.

Carswell, A. I.

Dillon, J. F.

J. F. Dillon, “Origin and uses of the Faraday rotation in magnetic crystals,” J. Appl. Phys. 39, 922–929 (1968).
[CrossRef]

Fletcher, P. C.

Fuji, Y.

Y. Fuji, “High-isolation polarization-insensitive N-port optical circulator,” Appl. Opt. 36, 1573–1575 (1997).
[CrossRef]

Y. Fuji, “High-isolation polarization-independent quasi-optical circulator,” J. Lightwave. Technol. 10, 1226–1229 (1992).
[CrossRef]

Gai, M

Gai, M.

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
[CrossRef]

Grund, C. J.

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 3–6.
[CrossRef]

Gurioli, M.

Halldorsson, T.

Hayashi, S.

H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Hwang, I. H.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
[CrossRef]

Ismaelli, A.

M Gai, M. Gurioli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, “Laboratory simulations of lidar returns from clouds,” Appl. Opt. 35, 5435–5442 (1996).
[CrossRef] [PubMed]

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
[CrossRef]

Iwamura, H.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Iwasaki, H.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Kerscher, M.

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

Koga, M.

M. Koga, T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
[CrossRef]

Krichbaumer, W.

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

Kubodera, K.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

Kuwahara, H.

Langerholc, J.

Lee, H. S.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
[CrossRef]

Matsui, I.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Matsumoto, T.

M. Koga, T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
[CrossRef]

Noda, J.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

Noormohammadian, M.

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

Obokata, T.

Oppel, U. G.

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

Pal, S. R.

Petrilla, R. L.

Ribbens, W. B.

Ryan, J. S.

Sandberg, S. P.

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 3–6.
[CrossRef]

Sansoni, P.

Sasano, Y.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Sassen, K.

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

K. Sassen, R. L. Petrilla, “Lidar depolarization from multiple scattering in marine stratus clouds,” Appl. Opt. 25, 1450–1459 (1986).
[CrossRef] [PubMed]

Scott, V. S.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
[CrossRef]

Shirasaki, M.

Spinhirne, J. D.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
[CrossRef]

Sugimoto, N.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Torii, Y.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

Weisman, D. L.

Zaccanti, G.

Appl. Opt. (9)

Bull. Am. Meteorol. Soc. (1)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Electron. Lett. (1)

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, “Simple polarization-independent optical circulator for optical transmission systems,” Electron. Lett. 15, 830–831 (1979).
[CrossRef]

J. Appl. Phys. (1)

J. F. Dillon, “Origin and uses of the Faraday rotation in magnetic crystals,” J. Appl. Phys. 39, 922–929 (1968).
[CrossRef]

J. Lightwave Technol (1)

M. Koga, T. Matsumoto, “High-isolation polarization-insensitive optical circulator for advanced optical communication systems,” J. Lightwave Technol 10, 1210–1216 (1992).
[CrossRef]

J. Lightwave. Technol. (1)

Y. Fuji, “High-isolation polarization-independent quasi-optical circulator,” J. Lightwave. Technol. 10, 1226–1229 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Opt. (1)

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter–receiver optics for lower atmospheric observations: geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Opt. Quantum Electron. (1)

H. Iwamura, S. Hayashi, H. Iwasaki, “A compact optical isolator using a Y3Fe5O12 crystal for near infrared radiation,” Opt. Quantum Electron. 10, 393–398 (1978).
[CrossRef]

Opt. Rev. (2)

P. Bruscaglioni, A. Ismaelli, G. Zaccanti, M. Gai, M. Gurioli, “Polarization of lidar returns from water clouds: calculations and laboratory scaled measurements,” Opt. Rev. 2, 312–318 (1995).
[CrossRef]

M. Kerscher, W. Krichbaumer, M. Noormohammadian, U. G. Oppel, “Polarized multiply scattered lidar signals,” Opt. Rev. 2, 304–307 (1995).
[CrossRef]

Other (2)

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 3–6.
[CrossRef]

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micropulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wadinger, eds. (Springer Verlag, Berlin, 1997), pp. 7–10.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polarization-dependent optical circulator.

Fig. 2
Fig. 2

Optical circulator for in-line-type lidar.

Fig. 3
Fig. 3

Experimental setup of the optical circulator for in-line-type lidar operation.

Fig. 4
Fig. 4

Direct reflection from the optical components and echo light from the diffusible wall. (A pulse laser and APDs were used.)

Fig. 5
Fig. 5

Total setup of lidar optics.

Fig. 6
Fig. 6

Lidar system with optical components installed.

Tables (4)

Tables Icon

Table 1 Components of the Optical Circulator for In-Line-Type Lidar

Tables Icon

Table 2 Insertion and Isolation Characteristics (decibels)

Tables Icon

Table 3 Characteristics of the Improved Circulator by Tilting Optical Components (decibels)

Tables Icon

Table 4 Specifications for Laser Source and Detectors

Metrics