Abstract

A noncontact, nonmechanical scanning, wide-field spectral interference microscope is developed for simultaneous measurement of three-dimensional step-height of discontinuous objects and tomographic imaging. A superluminescent diode (SLD) is used as a broadband light source and a liquid-crystal Fabry–Perot interferometer (LC-FPI) as a frequency-scanning device. By means of changing the injection current to the SLD, the spectral profile of the SLD is equalized, and a constant light input to the interferometer is achieved over the entire frequency-scan range. The Fourier-transform technique is used to determine both the amplitude and the phase of spectral fringe signals. The three-dimensional height distribution of a discontinuous object is obtained from the phase information, whereas optically sectioned images of the object are obtained either from the amplitude information alone or from the combination of both the amplitude and phase information. Experimental results with submicrometer resolution are presented for both step-height measurement and tomographic sectioning.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Sommergren, “Optical heterodyne interferometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef]
  2. K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.
    [CrossRef]
  3. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  4. T. Dressel, G. Hausler, H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919–925 (1992).
    [CrossRef]
  5. L. Deck, P. De Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  7. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  8. M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
    [CrossRef] [PubMed]
  9. M. Takeda, H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829–7837 (1994).
    [CrossRef] [PubMed]
  10. H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
    [CrossRef]
  11. S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
    [CrossRef] [PubMed]
  12. A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
    [CrossRef]
  13. M. K. Kim, “Wavelength-scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).
    [CrossRef]
  14. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
    [CrossRef]
  15. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
    [CrossRef]
  16. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  17. T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).
  18. H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
    [CrossRef]
  19. K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
    [CrossRef]
  20. S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
    [CrossRef]
  21. H. Hiratsuka, E. Kido, T. Yoshimura, “Simultaneous measurements of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998).
    [CrossRef]

2001 (1)

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

2000 (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

1999 (2)

1998 (1)

1997 (3)

1996 (1)

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

1994 (2)

1993 (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

1992 (1)

1991 (3)

M. Suematsu, M. Takeda, “Wavelength-shift interferometry for distance measurements using the Fourier transform technique for fringe analysis,” Appl. Opt. 30, 4046–4055 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

1990 (1)

1985 (1)

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

1982 (1)

1981 (1)

A. Kingsley, S.

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

A. Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Barnes, T. H.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

Creath, K.

K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.
[CrossRef]

Davies, D. E.

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

De Groot, P.

Deck, L.

Dressel, T.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Eiju, T.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franze, B.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Fujimoto, J. G.

S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Haible, P.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Hausler, G.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hirabayashi, K.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Hiratsuka, H.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ina, H.

Kido, E.

Kim, M. K.

Kinoshita, M.

Kobayashi, S.

Kuo, C. C.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Kurokawa, T.

M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
[CrossRef]

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Kuwamura, S.

Lee, B. S.

Leitgeb, R.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Matsuda, K.

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Moreno-Barriuso, E.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sommergren, G. E.

Sticker, M.

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Strand, T. C.

Suematsu, M.

Sunouchi, K.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tashiro, H.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Tiziani, H. J.

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

Tohmori, T.

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Tsuda, H.

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

Venzke, H.

Wada, S.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Watanabe, Y.

Yago, H.

Yamaguchi, I.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

S. Kuwamura, I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473–4482 (1997).
[CrossRef] [PubMed]

Yamamoto, A.

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Yamamoto, H.

Yoshimura, T.

Appl. Opt. (8)

Electron. Lett. (1)

S. A. Kingsley, D. E. Davies, “OFDR diagnostics for fiber and integrated-optics systems,” Electron. Lett. 21, 434–435 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Tsuda, K. Hirabayashi, T. Tohmori, T. Kurokawa, “Tunable light source using a liquid-crystal Fabry–Perot interferometer,” IEEE Photon. Technol. Lett. 3, 504–506 (1991).
[CrossRef]

J. Lightwave Technol. (1)

K. Hirabayashi, H. Tsuda, T. Kurokawa, “Tunable liquid-crystal Fabry–Perot interferometer filter for wavelength-division multiplexing communication systems,” J. Lightwave Technol. 11, 2033–2043 (1993).
[CrossRef]

J. Mod. Opt. (1)

H. J. Tiziani, B. Franze, P. Haible, “Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser,” J. Mod. Opt. 44, 1485–1496 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, “A thermal light source technique for optical coherence tomography,” Opt. Commun. 185, 57–64 (2000).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Opt. Rev. 8, 59–63 (2001).
[CrossRef]

Optik (1)

T. H. Barnes, T. Eiju, K. Matsuda, “Rough surface profile measurement using speckle optical frequency domain reflectometry with an external cavity tunable diode laser,” Optik 103, 93–100 (1996).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 357–373.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for profilometry and tomographic imaging of discontinuous objects. DA converter, digital-to-analog converter; PBS, polarizing beam splitter; BS, beam splitter.

Fig. 2
Fig. 2

Schematic drawing of the object structures. (a) Silicon-coated surface with 1- and 11-µm step-heights. (b) T-shaped object structure made of standard steel gauge block sets, and illustration of three different height steps: 1-, 29-, and 30-µm steps.

Fig. 3
Fig. 3

(a) Variation of SLD spectral intensity with injection current. (b) Variation of SLD current with wave number after the LC-FPI. (c) Variation of optical power transmitted by LC-FPI with wave number.

Fig. 4
Fig. 4

(a) Nonlinear variation of wave number versus applied voltage to LC-FPI. (b) Linear variation of wave number versus scanning step (line) and nonlinear voltage versus scanning step (curve).

Fig. 5
Fig. 5

(a) Example of interference fringe patterns for silicon object, (b) gauge block sets with different height steps.

Fig. 6
Fig. 6

(a) Example of time-varying sinusoidal intensity distributions at an arbitrary pixel: dotted curve, pixel at bottom around the center; solid curve, pixel on the top around corner of the silicon surface. (b) Fourier spectra of time varying sinusoidal intensity distributions. (c) Corresponding phase distribution versus wave number.

Fig. 7
Fig. 7

Experimental results: (a) and (b) are the three-dimensional height distribution of object structures shown in Figs. 2(a) and 2(b), respectively.

Fig. 8
Fig. 8

Cross section of one-dimensional height distribution (a) showing ∼1- and ∼11-µm steps of silicon surface, (b) showing ∼30-µm step between gauge blocks A and C, and (c) ∼1-µm step between gauge blocks A and B.

Fig. 9
Fig. 9

Optically sectioned images (with linearly scaled amplitude) of the object shown in Fig. 2 (a): (a) image of bottom section, (b) image of the whole object, and (c) image of top section.

Fig. 10
Fig. 10

Optically sectioned images (with linearly scaled amplitude) of the object shown in Fig. 2 (a), obtained with both three-dimensional height information and amplitude information: (a) and (b) images of the top section showing 1-µm depth resolution, (c) image of the object in between top and bottom of the object, and (d) image of bottom section.

Fig. 11
Fig. 11

Fourier spectra of spectral fringe signals for gauge block sets: dotted curve, a pixel on gauge block A; solid curve, pixel on gauge block C.

Fig. 12
Fig. 12

Optically sectioned images (with linearly scaled amplitude) of gauge block set: (a) image of bottom section with 1-µm step, (b) image of the whole object, (c) image of top section with 30-µm step.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

gx, y; k=Skax, y+bx, ycosklx, y
cx, y; t=½bx, ySktexpilx, ykt,
ϕx, y; k=px, yk-k0+ϕ0x, y,
hx, y=lx, y/2=px, y/2,
Δhmaxlc212cδν=12λ02δλ,
δϕ=2π=Δk2Δh=4π/cΔνΔh.
Δhminc21Δν=12λ02Δλ,

Metrics