Abstract

The reflection properties of a display device influence the available contrast and affect the perception of subtle detail. The display reflection characteristics of flat-panel displays (FPDs) are appropriately described by a six-dimensional bidirectional reflectance distribution function (BRDF). I describe a Monte Carlo method for modeling the bidirectional reflectance of multilayer emissive structures used in electronic display devices. I estimate the complete BRDF using a one-dimensional angular distribution function of the luminance. I apply the method to model typical high-performance cathode-ray tube and FPD structures. I find that, for the BRDF signatures of cathode-ray tubes characterized by a specular and a quasi-Lambertian components, the estimated values for the specular and diffuse reflection coefficients agree well with low-resolution experimental measurements conducted with a rotation arm and a collimated probe. I show that emissive FPDs with thin-film organic layers on reflective substrates can exhibit a predominant specular peak broadened by short-range light scattering.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Badano, “Image quality degradation by light scattering processes in high performance display devices for medical imaging,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1999).
  2. M. E. Becker, “Evaluation and characterization of display reflectance,” Displays 19, 35–54 (1998).
    [CrossRef]
  3. E. F. Kelley, “Display reflectance model based on BRDF,” Displays 19, 27–34 (1998).
    [CrossRef]
  4. M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
    [CrossRef]
  5. J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
    [CrossRef]
  6. A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965).
  8. A. Badano, J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices,” J. Appl. Phys. 90, 1827–1830 (2001).
    [CrossRef]
  9. This assumption is not true for emissive displays with polarizer films or for liquid-crystal displays. An extension of this research to include such structures is in progress.
  10. A. Badano, M. J. Flynn, “Method for measuring veiling glare in high-performance display devices,” Appl. Opt. 39, 2059–2066.

2001

M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[CrossRef]

A. Badano, J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices,” J. Appl. Phys. 90, 1827–1830 (2001).
[CrossRef]

1998

M. E. Becker, “Evaluation and characterization of display reflectance,” Displays 19, 35–54 (1998).
[CrossRef]

E. F. Kelley, “Display reflectance model based on BRDF,” Displays 19, 27–34 (1998).
[CrossRef]

Badano, A.

A. Badano, J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices,” J. Appl. Phys. 90, 1827–1830 (2001).
[CrossRef]

A. Badano, “Image quality degradation by light scattering processes in high performance display devices for medical imaging,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1999).

A. Badano, M. J. Flynn, “Method for measuring veiling glare in high-performance display devices,” Appl. Opt. 39, 2059–2066.

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

Becker, M. E.

M. E. Becker, “Evaluation and characterization of display reflectance,” Displays 19, 35–54 (1998).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965).

Compton, K.

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

Delacour, J.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Elias, M.

M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[CrossRef]

Flynn, M. J.

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

A. Badano, M. J. Flynn, “Method for measuring veiling glare in high-performance display devices,” Appl. Opt. 39, 2059–2066.

Hasna, G.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Kanicki, J.

A. Badano, J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices,” J. Appl. Phys. 90, 1827–1830 (2001).
[CrossRef]

Kelley, E. F.

E. F. Kelley, “Display reflectance model based on BRDF,” Displays 19, 27–34 (1998).
[CrossRef]

Martinez, P.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Mathieu, G.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Menu, M.

M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[CrossRef]

Monsees, T.

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

Muka, E.

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

Roche, J.-C.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Simonot, L.

M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[CrossRef]

Ungar, S.

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965).

Appl. Opt.

Displays

M. E. Becker, “Evaluation and characterization of display reflectance,” Displays 19, 35–54 (1998).
[CrossRef]

E. F. Kelley, “Display reflectance model based on BRDF,” Displays 19, 27–34 (1998).
[CrossRef]

J. Appl. Phys.

A. Badano, J. Kanicki, “Monte Carlo analysis of the spectral photon emission and extraction efficiency of organic light-emitting devices,” J. Appl. Phys. 90, 1827–1830 (2001).
[CrossRef]

Opt. Commun.

M. Elias, L. Simonot, M. Menu, “Bidirectional reflectance of a diffuse background covered by a partly absorbing layer,” Opt. Commun. 191, 1–7 (2001).
[CrossRef]

Other

J. Delacour, S. Ungar, G. Mathieu, G. Hasna, P. Martinez, J.-C. Roche, “Front panel engineering with CAD simulation tool,” in Flat Panel Display Technology and Display Metrology, B. Gnade, E. F. Kelley, eds., Proc. SPIE3636, 11–21 (1999).
[CrossRef]

A. Badano, M. J. Flynn, E. Muka, K. Compton, T. Monsees, “Veiling glare point-spread function of medical imaging monitors,” in Medical Imaging 1999: Image Display, S. K. Mun, Y. Kim, eds., Proc. SPIE3658, 458–467 (1999).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, New York, 1965).

This assumption is not true for emissive displays with polarizer films or for liquid-crystal displays. An extension of this research to include such structures is in progress.

A. Badano, “Image quality degradation by light scattering processes in high performance display devices for medical imaging,” Ph.D. dissertation (University of Michigan, Ann Arbor, Mich., 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the geometry used for the Monte Carlo simulations. The incident light beam impinges at α i into the display surface. The reflected photons are accumulated in the detector plane for all output angles α0,i .

Fig. 2
Fig. 2

B 10°(α) for a surface with 50% specular and 50% diffuse components. The specular fraction results in a narrow peak at the specular angle of incidence (in this case 10°). The correction with a factor equal to cos(α) yields a horizontal profile, typical of a Lambertian surface.

Fig. 3
Fig. 3

Rotation arm and collimated probe used in the experimental measurements of B α i (α).

Fig. 4
Fig. 4

B 10°(α) for CRT models investigated in this paper: (a) CRT-A, (b) CRT-B, (c) CRT-C, (d) CRT-D.

Fig. 5
Fig. 5

Detected photon counts by use of a 100 × 100 binning array corresponding to a high-resolution monochrome CRT, simulated with a sensor array in close proximity to the display screen: (a) CRT-A, (b) CRT-B, (c) CRT-C, (d) CRT-D.

Fig. 6
Fig. 6

Reflection distributions for a medical imaging CRT as predicted by the Monte Carlo simulations (line). The points represent the results of the experimental measurements and its associated error in the luminance readings and in the angular positioning by use of a manual rotation arm.

Fig. 7
Fig. 7

BRDF signatures B 10°(α) for a typical emissive FPD showing the spread in the specular peak caused by local light scattering.

Tables (2)

Tables Icon

Table 1 Characteristics of the CRT Models Used in the Monte Carlo Simulations

Tables Icon

Table 2 Reflection Coefficients for the Four CRT Models and for the Flat-Panel Emissive Display Considered in This Paper

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

BRDFθi, ϕi, θ0, ϕ0, λ, P=dL0θ0, ϕ0dEiθi, ϕi, λ, P,
Bαi, α0, λ, P=dL0α0, λ, PdEiαi, λ, P,
Bαiα0=dL0α0/dEiαi.
B10°α0=0.5Hα0=10°1β0.5×Hα010°.
B10°α0=5×106α0=10°103α010°.
RSnumber of photons in maxima of specular peaktotal number of photon histories,
RD12βπH090 Bs10°α01/deg,
RT=number of reflected photonstotal number of photon histories.

Metrics