Abstract

We present a noninvasive optical method to measure the oxygen saturation of hemoglobin in breast lesions. This method introduces the novel concept that the best choice of near-infrared wavelengths for noninvasive tumor oximetry consists of a wavelength pair (λ1, λ2) within the range 680–880 nm, where the specific values of λ1 and λ2 depend on the optical properties of the specific tumor under examination. Our method involves two steps: (1) identify the optimal wavelength pair for each tumor and (2) measure the tumor oxygenation using the optical data at the two selected wavelengths. We have tested our method by acquiring experimental optical data from turbid media containing cylindrical or irregularly shaped inhomogeneities and by computing theoretical data for the case of spherical lesions embedded in a highly scattering medium. We have found that our optical method can provide accurate and quantitative measurements of the oxygenation of embedded lesions without requiring knowledge of their size, shape, and depth.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
    [CrossRef] [PubMed]
  2. J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
    [CrossRef] [PubMed]
  3. National Cancer Institute, “Understanding breast changes—a health guide for all women,” http://www.cancer.gov/cancer_information/doc_img.aspx?viewid=1cf1a0cb-cdfe-4e6e-8ad1-73bb376232aa (2001).
  4. Medical College of Wisconsin Physicians & Clinics, “MRI highly effective for breast cancer detection,” http://healthlink.mcw.edu/article/956629092.html (2000).
  5. Breast Thermography Physician’s Review, “A review of breast thermography,” http://www.breastthermography.com/infrared_imaging_review_mf.htm (2001).
  6. J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
    [CrossRef] [PubMed]
  7. D. B. Kopans, “‘Early’ breast cancer detection using techniques other than mammography,” Am. J. Roentgenol. 143, 465–468 (1984).
    [CrossRef]
  8. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).
  9. C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
    [PubMed]
  10. E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).
  11. E. A. Sickles, “Breast cancer detection with transillumination and mammography,” Am. J. Roentgenol. 142, 841–844 (1984).
    [CrossRef]
  12. J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
    [CrossRef]
  13. A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
    [CrossRef] [PubMed]
  14. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  15. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
    [CrossRef]
  16. S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
    [CrossRef]
  17. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  18. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]
  19. J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
    [CrossRef]
  20. M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255–261 (1997).
    [CrossRef]
  21. K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).
  22. V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
    [CrossRef]
  23. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
    [CrossRef] [PubMed]
  24. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  25. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
    [CrossRef]
  26. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
    [CrossRef] [PubMed]
  27. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).
  28. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  29. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
    [CrossRef]
  30. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
    [CrossRef] [PubMed]
  31. Y. Yamashita, M. Kaneko, “Visible and infrared diaphanography for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, J. Beuthan, O. Minet, G. J. Mueller, V. Praparat, eds., Vol. IS11 of the SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 283–316.
  32. J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).
  33. R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.
  34. P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  35. P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
    [PubMed]
  36. P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
    [CrossRef] [PubMed]
  37. P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
    [CrossRef] [PubMed]
  38. M. Hockel, P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
    [CrossRef] [PubMed]
  39. Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
    [CrossRef] [PubMed]
  40. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
    [CrossRef] [PubMed]
  41. B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
    [CrossRef]
  42. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  43. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
    [CrossRef]
  44. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
    [CrossRef]
  45. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
    [CrossRef] [PubMed]
  46. V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
    [CrossRef]
  47. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
    [CrossRef]
  48. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  49. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  50. H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).
  51. J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).
  52. D. A. Boas, R. Gaudette, T. Gaudette, PMI software, http://www.nmr.mgh.harvard.edu/DOT/resources/toolbox.htm .
  53. V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
    [CrossRef] [PubMed]
  54. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
    [CrossRef]
  55. S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.
  56. Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

2001 (3)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
[CrossRef] [PubMed]

M. Hockel, P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
[CrossRef] [PubMed]

2000 (6)

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

1999 (3)

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

1998 (5)

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
[CrossRef]

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

1997 (5)

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for diffuse light transport in complex biological tissues,” J. Opt. Soc. Am. A 14, 255–261 (1997).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

1996 (3)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

1995 (3)

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

1994 (4)

S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[CrossRef]

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

1992 (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1991 (2)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

1990 (1)

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

1989 (1)

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

1986 (1)

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

1984 (2)

E. A. Sickles, “Breast cancer detection with transillumination and mammography,” Am. J. Roentgenol. 142, 841–844 (1984).
[CrossRef]

D. B. Kopans, “‘Early’ breast cancer detection using techniques other than mammography,” Am. J. Roentgenol. 143, 465–468 (1984).
[CrossRef]

1982 (1)

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

1972 (1)

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

1929 (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Ahlgren, P. D.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

Åkesson, P.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Alveryd, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Anderson, E. R.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Andersson, I.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aspegren, K.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Balldin, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Barbour, R. L.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Barbour, S. S.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Belliveau, N.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

Berger, A. J.

Bevilacqua, F.

Bjurstam, N.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Blattman, S.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Bolden, S.

P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Brown, L. R.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Brukilacchio, T. J.

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Butler, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Carlsen, E.

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

Chance, B.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Chernomordik, V.

Colak, S. B.

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

Conant, E.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Coquez, O.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Cubeddu, R.

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Cutler, M.

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Delpy, D. T.

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).

Dickerson, N.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Edström, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Elmore, J. G.

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Erdl, H.

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Fagerberg, G.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Feinstein, A. R.

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Feng, T. C.

Ferrari, M.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Fishkin, J. B.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Flegner, C.

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Franceschini-Fantini, M. A.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Gandjbakhche, A.

Gerety, E. D.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

Gisvold, J. J.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Glas, U.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Graber, H. L.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

S. Fantini, M. A. Franceschini, E. Gratton, “Semi-infinite geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation,” J. Opt. Soc. Am. B 11, 2128–2138 (1994).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Gros, C. M.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Grosenick, D.

Gross, J. D.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Haensch, W.

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

Hallberg, D.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Haskell, R. C.

Hattery, D.

Hebden, J. C.

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

Heywang-Köbrunner, S.

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

Hockel, M.

P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
[CrossRef] [PubMed]

M. Hockel, P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
[CrossRef] [PubMed]

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

Hohenberger, P.

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

Holboke, M. J.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Hooft, G. W.’t

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

Hoogenrad, J. H.

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Howard, D. H.

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Hummel, Y.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Jacques, S. L.

Jakubowski, D.

Jarlman, O.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Kallinowski, F.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Kaneko, M.

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanography for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, J. Beuthan, O. Minet, G. J. Mueller, V. Praparat, eds., Vol. IS11 of the SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 283–316.

Kaschke, M.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Kelleher, D. K.

P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
[CrossRef] [PubMed]

Keyserlingk, J. R.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

Kidney, D.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Knoop, C.

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

Kopans, D. B.

D. B. Kopans, “‘Early’ breast cancer detection using techniques other than mammography,” Am. J. Roentgenol. 143, 465–468 (1984).
[CrossRef]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Larsson, S. A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Lee, C. H.

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Li, A.

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Li, X.

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

Lidbrink, E.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Lingaas, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Liu, H.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Löfgren, M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Ma, X. H.

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
[CrossRef]

Maier, J. S.

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Matcher, S. J.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

McAdams, M. S.

McBride, T.

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

McBride, T. O.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).

Moesta, K. T.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
[CrossRef]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

Okunieff, P.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Osei, E. K.

Osterberg, U.

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

Osterberg, U. L.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

Ostermeyer, M. R.

Otto, J.

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).

Panetta, T.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Patterson, M. S.

M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Paulsen, K.

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

Paulsen, K. D.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

Pei, Y.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Pham, D.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Pifferi, A.

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Pogue, B. W.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

Poplack, S. B.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, K. D. Paulsen, “Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygen saturation in breast tissue,” Appl. Opt. 38, 1–11 (1999).
[CrossRef]

Puls, R.

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

Quaresima, V.

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Quenneville, Y.

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Ranfranz, M. K.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Raygor, D. J.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Rinneberg, H. H.

Rudenstam, C.-M.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Samuelsson, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Schlag, P. M.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammography and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Schlenger, K.

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

Schmidt, F. E. W.

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).

Schmitz, C. H.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Shah, N.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Sickles, E. A.

E. A. Sickles, “Breast cancer detection with transillumination and mammography,” Am. J. Roentgenol. 142, 841–844 (1984).
[CrossRef]

Stott, J.

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Strender, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Svaasand, L. O.

Swee, R. G.

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Tabàr, L.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Taroni, P.

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Taube, A.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Testorf, M.

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

Tong, T.

P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Torricelli, A.

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39, 6498–6507 (2000).
[CrossRef]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

Tsay, T. T.

Valentini, G.

V. Chernomordik, D. Hattery, A. Gandjbakhche, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, R. Cubeddu, “Quantification by random walk of the optical parameters of nonlocalized abnormalities embedded within tissuelike phantoms,” Opt. Lett. 25, 951–953 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

van der Linden, E. S.

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

van der Mark, M. B.

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

vandeVen, M. J.

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Vaupel, P.

P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
[CrossRef] [PubMed]

M. Hockel, P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
[CrossRef] [PubMed]

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Venugopalan, V.

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Wabnitz, H.

Walker, S. A.

S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. Moesta, “Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods,” Appl. Opt. 37, 1982–1989 (1998).
[CrossRef]

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Wallberg, H.

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Wells, C. K.

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Wells, K.

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wingo, P. A.

P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Xie, C.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Yamashita, Y.

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanography for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, J. Beuthan, O. Minet, G. J. Mueller, V. Praparat, eds., Vol. IS11 of the SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 283–316.

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis,” Appl. Opt. 36, 75–92 (1997).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

Yu, E.

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

Zhang, Y.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Zhong, A.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

Zhou, S.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Zhu, Q.

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

Zinth, W.

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).

Am. J. Roentgenol. (3)

D. B. Kopans, “‘Early’ breast cancer detection using techniques other than mammography,” Am. J. Roentgenol. 143, 465–468 (1984).
[CrossRef]

E. A. Sickles, “Breast cancer detection with transillumination and mammography,” Am. J. Roentgenol. 142, 841–844 (1984).
[CrossRef]

J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, “Comparison of mammography and transillumination light scanning in the detection of breast lesions,” Am. J. Roentgenol. 147, 191–194 (1986).
[CrossRef]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time-space and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999).
[CrossRef]

Breast Cancer Res. Treat. (1)

P. Hohenberger, C. Flegner, W. Haensch, P. M. Schlag, “Tumor oxygenation correlates with molecular growth determinants in breast cancer,” Breast Cancer Res. Treat. 48, 97–106 (1998).
[CrossRef] [PubMed]

Breast J. (1)

J. R. Keyserlingk, P. D. Ahlgren, E. Yu, N. Belliveau, “Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and stage II breast cancer,” Breast J. 4, 245–251 (1998).
[CrossRef] [PubMed]

CA Cancer J. Clin. (1)

P. A. Wingo, T. Tong, S. Bolden, “Cancer statistics, 1995,” CA Cancer J. Clin. 45, 8–30 (1995).
[CrossRef] [PubMed]

Cancer (1)

A. Alveryd, I. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edström, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, E. Lidbrink, H. Lingaas, M. Löfgren, C.-M. Rudenstam, L. Strender, L. Samuelsson, L. Tabàr, A. Taube, H. Wallberg, P. Åkesson, D. Hallberg, “Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice,” Cancer 65, 1671–1677 (1990).
[CrossRef] [PubMed]

Cancer Res. (2)

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

P. Vaupel, K. Schlenger, C. Knoop, M. Hockel, “Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancer by computerized O2 tension measurements,” Cancer Res. 51, 3316–3322 (1991).
[PubMed]

Diagn. Imaging (1)

E. Carlsen, “Transillumination light scanning,” Diagn. Imaging 4, 28–34 (1982).

J. Biomed. Opt. (3)

Q. Zhu, E. Conant, B. Chance, “Optical imaging as an adjunct to sonograph in differentiating benign from malignant breast lesions,” J. Biomed. Opt. 5, 229–236 (2000).
[CrossRef] [PubMed]

M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).
[CrossRef] [PubMed]

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Radiol. Electrol. Med. Nucl. (1)

C. M. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire,” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Med. Phys. (2)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge-effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein, “Variability in radiologists’ interpretation of mammograms,” N. Engl. J. Med. 331, 1493–1499 (1994).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, “Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34, 32–42 (1995).
[CrossRef]

Opt. Exp. (1)

B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Exp. 1, 391–403 (1997), http://www.opticsexpress.org/issue.cfm?issue_id20 .
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. B (1)

B. J. Tromberg, O. Coquez, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, D. Pham, “Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration,” Philos. Trans. R. Soc. London Ser. B 352, 661–668 (1997).
[CrossRef]

Photochem. Photobiol. (1)

V. Quaresima, S. J. Matcher, M. Ferrari, “Identification and quantification of intrinsic optical contrast for near-infrared mammography,” Photochem. Photobiol. 67, 4–14 (1998).
[CrossRef] [PubMed]

Phys. Rev. E (1)

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Proc. Natl. Acad. Sci. USA (4)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 51, 4887–4891 (1994).
[CrossRef]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. USA 98, 4420–4425 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

V. Ntziachristos, X. H. Ma, B. Chance, “Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography,” Rev. Sci. Instrum. 69, 4221–4223 (1998).
[CrossRef]

Semin. Oncol. (2)

P. Vaupel, D. K. Kelleher, M. Hockel, “Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy,” Semin. Oncol. 28, 29–35 (2001).
[CrossRef] [PubMed]

M. Hockel, P. Vaupel, “Biological consequences of tumor hypoxia,” Semin. Oncol. 28, 36–41 (2001).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–727 (1929).

Other (13)

National Cancer Institute, “Understanding breast changes—a health guide for all women,” http://www.cancer.gov/cancer_information/doc_img.aspx?viewid=1cf1a0cb-cdfe-4e6e-8ad1-73bb376232aa (2001).

Medical College of Wisconsin Physicians & Clinics, “MRI highly effective for breast cancer detection,” http://healthlink.mcw.edu/article/956629092.html (2000).

Breast Thermography Physician’s Review, “A review of breast thermography,” http://www.breastthermography.com/infrared_imaging_review_mf.htm (2001).

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system for optical tomography,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 599–607 (1997).

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phase array instrumentation appropriate to high precision detection and localization of breast tumor,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 98–106 (1997).

Y. Yamashita, M. Kaneko, “Visible and infrared diaphanography for medical diagnosis,” in Medical Optical Tomography: Functional Imaging and Monitoring, J. Beuthan, O. Minet, G. J. Mueller, V. Praparat, eds., Vol. IS11 of the SPIE Institute Series (SPIE, Bellingham, Wash., 1993), pp. 283–316.

J. H. Hoogenrad, M. B. van der Mark, S. B. Colak, G. W.’t Hooft, E. S. van der Linden, “First results from the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1998).

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, A. Zhong, S. S. Barbour, S. Blattman, T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” Proceedings of the Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, 1999, A. H. Gandjbakhche, ed. (Optical Society of America, Washington, D.C., 2000), pp. 161–166.

S. Fantini, M. A. Franceschini, G. Gaida, H. Jess, H. Erdl, W. W. Mantulin, E. Gratton, K. T. Moesta, P. M. Schlag, M. Kaschke, “Contrast-enhancement by edge effect corrections in frequency-domain optical mammography,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 160–163.

Q. Zhang, T. J. Brukilacchio, J. Stott, A. Li, D. A. Boas, “Spectroscopic difference tomography for breast lesion detection,” Opt. Lett. (submitted for publication).

H. Heusmann, J. Kölzer, R. Puls, J. Otto, S. Heywang-Köbrunner, W. Zinth, “Spectral transillumination of human breast tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 788–808 (1995).

J. Kölzer, G. Mitic, J. Otto, W. Zinth, “Measurements of the optical properties of breast tissue using time-resolved transillumination,” in Photon Transport in Highly Scattering Tissue, S. Arrillier, B. Chance, G. J. Mueller, A. V. Priezzhev, V. V. Tuchin, eds., Proc. SPIE2326, 143–152 (1995).

D. A. Boas, R. Gaudette, T. Gaudette, PMI software, http://www.nmr.mgh.harvard.edu/DOT/resources/toolbox.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics