Abstract

Optical tomography is a potential diagnostic method for visualizing optical properties of tissues in vivo. We present an optical tomography method that has been designed for imaging of the human testes, particularly for spectroscopic tumor differentiation. In this application we need to compute three-dimensional distributions of the optical contrast (absorption coefficient) in the tissue in real time. Thus we have given special care to elaborate an efficient inverse algorithm that takes the limitations of spatial resolution and data space point density into account. Our inverse solution is based on a linearization approach and a dedicated object space discretization. Furthermore, we introduce the concept of fuzzy voxels, which enables a reconstruction-inherent image smoothing.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, “Optical method,” Ann. Rev. Biophys. Chem. 20, 1–28 (1991).
    [CrossRef]
  2. F. F. Jöbsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [CrossRef] [PubMed]
  3. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).
  4. J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
    [CrossRef]
  5. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
    [CrossRef] [PubMed]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
    [CrossRef]
  7. A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
    [CrossRef] [PubMed]
  8. M. A. Franceschini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  9. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
    [CrossRef]
  10. A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
    [CrossRef]
  11. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
    [CrossRef]
  12. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  13. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  14. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
    [CrossRef]
  15. J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
    [CrossRef]
  16. B. W. Pogue, M. Testorf, T. McBride, U. Osterberg, K. Paulsen, “Instrumentation and design of a frequency-domain optical tomography imager for breast cancer detection,” Opt. Express 1, 391–403 (1997), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  17. B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
    [CrossRef]
  18. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  19. E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
    [CrossRef] [PubMed]
  20. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
    [CrossRef]
  21. S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 35–64.
  22. K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  23. R. Model, M. Orlt, M. Walzel, R. Hünlich, “Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data,” J. Opt. Soc. Am. A 14, 313–324 (1997).
    [CrossRef]
  24. S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1997), http://www.opticsexpress.org .
    [CrossRef]
  25. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express 1, 404–413 (1997), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  26. R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.
  27. M. Schweiger, S. A. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
    [CrossRef]
  28. F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
    [CrossRef]
  29. E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
    [CrossRef]
  30. U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
    [CrossRef] [PubMed]
  31. S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
    [CrossRef]
  32. G. H. Golub, C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation II, F. L. Bauer, ed. (Springer-Verlag, New York, 1971).
    [CrossRef]
  33. R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
    [CrossRef] [PubMed]
  34. P. Gilbert, “Iterative methods for the reconstruction of three-dimensional objects from projections,” J. Theor. Biol. 36, 105–117 (1972).
    [CrossRef] [PubMed]
  35. U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
    [CrossRef]
  36. X. Cheng, D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4, 299–307 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  37. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
    [CrossRef] [PubMed]

2001 (2)

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

2000 (4)

F. Gao, P. Poulet, Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).
[CrossRef]

M. A. Franceschini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

1999 (3)

1998 (2)

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

M. Schweiger, S. A. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

1997 (5)

1996 (2)

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef] [PubMed]

1995 (2)

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

1993 (1)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

1991 (2)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

B. Chance, “Optical method,” Ann. Rev. Biophys. Chem. 20, 1–28 (1991).
[CrossRef]

1990 (2)

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

1977 (1)

F. F. Jöbsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

1972 (1)

P. Gilbert, “Iterative methods for the reconstruction of three-dimensional objects from projections,” J. Theor. Biol. 36, 105–117 (1972).
[CrossRef] [PubMed]

1970 (1)

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

1929 (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).

Andersson-Engels, S.

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

Arridge, S. A.

Arridge, S. R.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

S. R. Arridge, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213–226 (1997), http://www.opticsexpress.org .
[CrossRef]

S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 35–64.

S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

Barbour, R. L.

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

Benaron, D. A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Bender, R.

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Berg, R.

Berndt, K.

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

Beuthan, J.

A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
[CrossRef]

Boas, D.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Boas, D. A.

Chance, B.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

B. Chance, “Optical method,” Ann. Rev. Biophys. Chem. 20, 1–28 (1991).
[CrossRef]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Chang, J-H.

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

Cheng, X.

Cheong, W.-F.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Colak, S. B.

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Cope, M.

S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

Cutler, M.

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).

de Haller, E. B.

E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef] [PubMed]

Dehghani, H.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

Delpy, D. T.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

Fantini, S.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Frahm, J.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Franceschini, M. A.

M. A. Franceschini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express 6, 49–57 (2000), http://www.opticsexpress.org .
[CrossRef] [PubMed]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Freyer, R.

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
[CrossRef]

U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
[CrossRef]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Gaida, G.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Gao, F.

Gilbert, P.

P. Gilbert, “Iterative methods for the reconstruction of three-dimensional objects from projections,” J. Theor. Biol. 36, 105–117 (1972).
[CrossRef] [PubMed]

Golub, G. H.

G. H. Golub, C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation II, F. L. Bauer, ed. (Springer-Verlag, New York, 1971).
[CrossRef]

Gordon, R.

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Gratton, E.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Grosenick, D.

Hampel, U.

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
[CrossRef]

U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
[CrossRef]

Hanson, K. M.

A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
[CrossRef]

He, L.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Hebden, J. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Herman, G. T.

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

Hielscher, A. H.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
[CrossRef]

Hillman, E. M. C.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Hintz, S. R.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Hirth, Ch.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Hoogenraad, J.

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Hünlich, R.

Ito, Y.

A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Jarlman, O.

Jess, H.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Jiang, H.

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Kang, K.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Kaschke, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Kermit, E. L.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Kleinschmidt, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Klose, A. D.

A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
[CrossRef]

L. Graber, H.

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

Lakowicz, J. R.

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Liu, H.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Maki, A.

A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Mantulin, W. W.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

McBride, T.

Model, R.

Moesta, K. T.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

Obrig, H.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Orlt, M.

Osterberg, U.

Paulsen, K.

Paulsen, K. D.

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

Poulet, P.

Reinsch, C.

G. H. Golub, C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation II, F. L. Bauer, ed. (Springer-Verlag, New York, 1971).
[CrossRef]

Rinneberg, H. H.

Schlag, P. M.

D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, “Development of a time-domain optical mammograph and first in vivo applications,” Appl. Opt. 38, 2927–2943 (1999).
[CrossRef]

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Schleicher, E.

E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
[CrossRef]

U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
[CrossRef]

Schmidt, F. E. W.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

Schweiger, M.

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

M. Schweiger, S. A. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).
[CrossRef]

Seeber, M.

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Stevenson, D. K.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Svanberg, S.

t’Hooft, G. W.

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

Testorf, M.

van der Linden, E. S.

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

van der Mark, J. M.

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

van der Zee, P.

S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

van Houten, J. C.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

Villringer, A.

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

W. Schmidt, F. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

Wabnitz, H.

Walzel, M.

Wang, Y.

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

Yamada, Y.

Yamashita, Y.

A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

Zepnick, H.

U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
[CrossRef]

E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
[CrossRef]

Zhou, S.

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Anal. Biochem. (1)

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Ann. Rev. Biophys. Chem. (1)

B. Chance, “Optical method,” Ann. Rev. Biophys. Chem. 20, 1–28 (1991).
[CrossRef]

Appl. Opt. (3)

Chem. Phys. Lett. (1)

J. R. Lakowicz, K. Berndt, “Frequency-domain measurements of photon migration in tissues,” Chem. Phys. Lett. 166, 246–252 (1990).
[CrossRef]

IEEE Trans. Med. Imaging (1)

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001)
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–93 (1999).
[CrossRef]

J. Biomed. Opt. (1)

E. B. de Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef] [PubMed]

J. Cerebral Blood Flow Metab. (1)

D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, Ch. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cerebral Blood Flow Metab. 20, 469–477 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Theor. Biol. (2)

R. Gordon, R. Bender, G. T. Herman, “Algebraic reconstruction techniques (ART), for three-dimensional electron microscopy and x-ray photography,” J. Theor. Biol. 29, 471–481 (1970).
[CrossRef] [PubMed]

P. Gilbert, “Iterative methods for the reconstruction of three-dimensional objects from projections,” J. Theor. Biol. 36, 105–117 (1972).
[CrossRef] [PubMed]

Med. Phys. (3)

U. Hampel, R. Freyer, “Fast image reconstruction for optical absorption tomography in media with radially symmetric boundaries,” Med. Phys. 25, 92–101 (1998).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

A. Maki, Y. Yamashita, Y. Ito, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,”Med. Phys. 22, 1997–2005 (1995).
[CrossRef] [PubMed]

Med. Phys. Biol. (1)

E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, S. R. Arridge, “Time-resolved optical tomography of the human forearm,” Med. Phys. Biol. 46, 1117–1130 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Proc. Natl. Acad. Sci. USA (1)

M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results,” Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71, 256–265 (2000).
[CrossRef]

B. Chance, K. Kang, L. He, H. Liu, S. Zhou, “Precision localization of hidden absorbers in body tissues with phase-array optical systems,” Rev. Sci. Instrum. 67, 4324–4332 (1996).
[CrossRef]

Science (2)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

F. F. Jöbsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).

Other (8)

J. Hoogenraad, J. M. van der Mark, S. B. Colak, G. W. t’Hooft, E. S. van der Linden, “First results of the Philips optical mammoscope,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 184–190 (1997).
[CrossRef]

A. D. Klose, A. H. Hielscher, K. M. Hanson, J. Beuthan, “Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis,” in Photon Propagation in Tissues IV, D. A. Benaron, B. Chance, M. Ferrari, M. Kohl, eds., Proc. SPIE3566, 151–160 (1998).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J-H. Chang, R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 87–120.

S. R. Arridge, “The forward and inverse problems in time resolved infra-red imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Müller, ed. (SPIE Optical Engineering Press, Bellingham, Wash.1993), Vol. IS11, pp. 35–64.

E. Schleicher, U. Hampel, H. Zepnick, R. Freyer, “NIR spectroscopy for the diagnosis of testicular pathologies,” in Photon Migration Diffuse Spectroscopy, and Optical Coherence Tomography: Imaging and Functional Assessment, S. Andersson-Engels, J. G. Fujimoto, eds., Proc. SPIE4160, 128–139 (2000).
[CrossRef]

S. R. Arridge, P. van der Zee, D. T. Delpy, M. Cope, “Reconstruction methods for infrared absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

G. H. Golub, C. Reinsch, “Singular value decomposition and least squares solutions,” in Handbook for Automatic Computation II, F. L. Bauer, ed. (Springer-Verlag, New York, 1971).
[CrossRef]

U. Hampel, E. Schleicher, H. Zepnick, R. Freyer, “Clinical NIR spectroscopy and optical tomography of the testis,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 210–220 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Organ applicator (top) and arrangement of fibers on the surface of the imaged volume (bottom). The dotted lines indicate the boundaries of the applicator.

Fig. 2
Fig. 2

Example for a photon sampling volume between (a) source S and detector D and (b) a gray-value-encoded data map with 60 detector readings (colums) and 60 source positions (rows). The crossed data points indicate channels that are excluded from reconstruction.

Fig. 3
Fig. 3

Object space discretization shown in a horizontal (left) and vertical (right) cross section of the volume.

Fig. 4
Fig. 4

Principle of overlapping volume elements. All voxels are defined by a linear weight function, shown here for a number of 12 voxels in the x dimension.

Fig. 5
Fig. 5

Singular value spectra of the matrix K for a volume discretization with disjoint and fuzzy voxels.

Fig. 6
Fig. 6

Reconstruction results for noise-free synthetic data of three unity absorbers.

Fig. 7
Fig. 7

Convergence behavior of the iterative matrix solvers. For the ART algorithm the dependence of convergence on the initial guess μ(0) is shown.

Fig. 8
Fig. 8

Reconstruction results for noisy synthetic data of two closely spaced unity absorbers.

Fig. 9
Fig. 9

Image-reconstruction example with two differently absorbing objects in an Intralipid solution.

Fig. 10
Fig. 10

Image-reconstruction example for three laser wavelengths: top, vertical slice view of the volume images; bottom, volume contrast profile along a straight line going through both inhomogeneities as indicated in the 686-nm reconstruction image. o.c.u., optical contrast units.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

mia=logPiobjλ-logPirefλ,
mis=logPiobjλ1-logPiobjλ2,
{·Dr-μar}ϕr=-sr,
jr=-nDrϕr|rS,
D2-μaGϕrSr=-δr-rS.
GjrrD=-nDGϕrrD|rDS.
jrD=K(rS, rD, r)μar=GϕrSrGjrrDar,
mi=VKrSi, rDi, rμrdV.
m=Kμ.
br=i KrSi, rDi, r,
v˜r=1-|r-rc|/h|r-rc|<h,rV0else.
vir=v˜irj v˜jr,
Kij=VrSi, rDi, rvjrdV.
K=USVT
K+=VWUT.
wi=1Si+γ/Si.
ART:μ(τ+1)=μ(τ)+λ mi-Kiμ(τ)KiTKi2,
SIRT:μ(τ+1)=μ(τ)+λ m-Kμ(τ)KTK2,
miσ=mi1+randσ,

Metrics