Abstract

We report the first gas temperature measurements in plasmas to our knowledge obtained by filtered Rayleigh scattering (FRS). A narrow-linewidth Ti:sapphire laser is used as the illumination source, and a mercury filter provides strong suppression of elastic background. We perform measurements in weakly ionized glow discharges in pure argon and in an argon-plus-1%-nitrogen mixture. Where possible, we verify the FRS technique by comparing filtered measurements with unfiltered measurements. We present point measurements of axial temperature with uncertainties of less than 5%. We use a planar scheme to obtain radial temperature profiles with uncertainties of 10%.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1987).
  2. P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).
  3. B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
    [Crossref]
  4. A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001).
    [Crossref]
  5. Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
    [Crossref]
  6. M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
    [Crossref]
  7. T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).
  8. E. B. Cummings, “Laser-induced thermal acoustics—simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
    [Crossref] [PubMed]
  9. P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
    [Crossref]
  10. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., (1996).
  11. D. Hoffman, K. U. Munch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996).
    [Crossref] [PubMed]
  12. G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
    [Crossref]
  13. M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996).
    [Crossref]
  14. G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).
  15. A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).
  16. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, (1998).
  17. G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).
  18. A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 2000).
  19. N. D. Finkelstein, “An ultraviolet laser source and spectral imaging filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 1998).
  20. A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
    [Crossref]
  21. C. K. Ni, A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673–1675 (1996).
    [Crossref] [PubMed]
  22. L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
    [Crossref]
  23. J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
    [Crossref]
  24. M. Capitelli, Nonequilibrium Vibrational Kinetics (Springer-Verlag, Berlin, 1986).
    [Crossref]
  25. B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).
  26. G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999).
    [Crossref]
  27. A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001).
    [Crossref]
  28. N. A. Dyatko, “Jumps and bi-stabilities in electron energy distribution in Ar-N2 post discharge plasma,” J. Phys. D 33, 2010–2018 (2000).
    [Crossref]
  29. E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).
  30. Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

2001 (2)

A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001).
[Crossref]

A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001).
[Crossref]

2000 (4)

N. A. Dyatko, “Jumps and bi-stabilities in electron energy distribution in Ar-N2 post discharge plasma,” J. Phys. D 33, 2010–2018 (2000).
[Crossref]

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[Crossref]

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

1999 (4)

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).

P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
[Crossref]

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999).
[Crossref]

1997 (2)

B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
[Crossref]

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

1996 (3)

1994 (2)

G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

E. B. Cummings, “Laser-induced thermal acoustics—simple accurate gas measurements,” Opt. Lett. 19, 1361–1363 (1994).
[Crossref] [PubMed]

1992 (1)

E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).

1991 (1)

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

1989 (1)

T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).

1984 (1)

J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
[Crossref]

1979 (1)

B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).

1976 (1)

Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

1972 (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).

Arnette, S. A.

G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Bakker, L. P.

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

Barisas, B. G.

T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).

Barker, P. F.

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[Crossref]

P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
[Crossref]

Bletzinger, P.

B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
[Crossref]

Boley, C. D.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).

Bruchhausen, M.

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

Carter, C. D.

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

Chernysheva, N. V.

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

Cummings, E. B.

de Hoog, F. J.

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

Desai, R. C.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).

Doerk, T.

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

Drummond, J. P.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996).
[Crossref]

Dyatko, N. A.

N. A. Dyatko, “Jumps and bi-stabilities in electron energy distribution in Ar-N2 post discharge plasma,” J. Phys. D 33, 2010–2018 (2000).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, (1998).

Elliot, G. S.

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Ershov, A. P.

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

Ferreira, C. M.

G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999).
[Crossref]

Finkelstein, N. D.

N. D. Finkelstein, “An ultraviolet laser source and spectral imaging filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 1998).

Forkey, J. N.

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., (1996).

Freriks, J. M.

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

Ganguly, B. N.

B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
[Crossref]

Garscadden, A.

B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
[Crossref]

Gluma, N.

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

Golubovskii, B. Yu.

B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).

Golubovskii, Y. B.

Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

Grinstead, J. H.

P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
[Crossref]

Hadrich, S.

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

Hoffman, D.

Ionikh, Y. Z.

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

Jovin, T. M.

T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).

Kagan, Y. M.

Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

Karaulova, E. V.

E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).

Kestin, J.

J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
[Crossref]

Knierim, K.

J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
[Crossref]

Kroesen, G. M. W.

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

Kung, A. H.

Lebedev, Yu. A.

E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).

Leipertz, A.

Mason, F. A.

J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
[Crossref]

Matveev, A. A.

A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001).
[Crossref]

Meshchanov, A. V.

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

Miles, R. B.

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[Crossref]

P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
[Crossref]

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

Munch, K. U.

Nejad, A. S.

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

Ni, C. K.

Northam, G. B.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996).
[Crossref]

Petrov, G. M.

G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999).
[Crossref]

Ponomareva, S. E.

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

Raizer, Y. P.

Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1987).

Rzhevskii, V. N.

Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

Samimy, M.

G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

Shibkov, V. M.

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

Silakov, V. P.

A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001).
[Crossref]

Smith, M. W.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996).
[Crossref]

Sonnenburg, R.

B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).

Subramaniam, V. V.

A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001).
[Crossref]

Tenti, G.

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).

Uhlenbusch, J.

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

Voigt, J.

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

Voinovich, P. A.

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

White, A. R.

A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001).
[Crossref]

Yalin, A. P.

A. P. Yalin, P. F. Barker, R. B. Miles, “Characterization of laser seeding by use of group-velocity dispersion in an atomic-vapor filter,” Opt. Lett. 25, 502–504 (2000).
[Crossref]

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).

A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 2000).

Yoshida, T. M.

T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).

AIAA J. (1)

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34 (3), 434–441 (1996).
[Crossref]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, R. C. Desai, “On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases,” Can. J. Phys. 54, 285–297 (1972).

Combust. Sci. Technol. (1)

G. S. Elliot, N. Gluma, C. D. Carter, A. S. Nejad, “Two-dimensional temperature field measurements using a molecular filter based technique,” Combust. Sci. Technol. 125, 351–357 (1997).
[Crossref]

Exp. Fluids (1)

G. S. Elliot, M. Samimy, S. A. Arnette, “A molecular based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).

High Temp. (1)

P. A. Voinovich, A. P. Ershov, S. E. Ponomareva, V. M. Shibkov, “Propagation of weak shock waves in plasma of longitudinal flow discharge in air,” High Temp. 29 (3), 468–475 (1991).

J. Mol. Spectrosc. (1)

M. Bruchhausen, J. Voigt, T. Doerk, S. Hadrich, J. Uhlenbusch, “Resonant coherent anti-Stokes Raman scattering applied to vapor phase InI,” J. Mol. Spectrosc. 201 (1), 70–82 (2000).
[Crossref]

J. Phys. Chem. Ref. Data (1)

J. Kestin, K. Knierim, F. A. Mason, “Equilibrium and transport properties of the noble gases and their mixtures at low density,” J. Phys. Chem. Ref. Data 13 (1), 229–303 (1984).
[Crossref]

J. Phys. D (2)

N. A. Dyatko, “Jumps and bi-stabilities in electron energy distribution in Ar-N2 post discharge plasma,” J. Phys. D 33, 2010–2018 (2000).
[Crossref]

E. V. Karaulova, Yu. A. Lebedev, “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas,” J. Phys. D 25 (3), 401–412 (1992).

J. Thermophys. Heat Transfer (1)

A. P. Yalin, R. B. Miles, “Temperature measurements by ultraviolet filtered Rayleigh scattering using a mercury filter,” J. Thermophys. Heat Transfer 14 (2), 210–215 (1999).

Opt. Commun. (1)

P. F. Barker, J. H. Grinstead, R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168, 177–182 (1999).
[Crossref]

Opt. Eng. (1)

T. M. Yoshida, T. M. Jovin, B. G. Barisas, “Resonance coherent anti-Stokes Raman scattering in nitrogen-dioxide using a broadband dye-laser,” Opt. Eng. 34, 2631–2636 (1989).

Opt. Lett. (4)

Opt. Spectrosc. (1)

Y. B. Golubovskii, Y. M. Kagan, V. N. Rzhevskii, “Atomic temperature measurements in a positive discharge column for intermediate pressures in inert gases,” Opt. Spectrosc. 41,(5) 221–223 (1976).

Phys. Fluids (1)

A. R. White, V. V. Subramaniam, “Effect of wall shear on the propagation of a weak spark-generated shock wave in argon,” Phys. Fluids 13, 2441–2444 (2001).
[Crossref]

Phys. Lett. A (2)

Y. Z. Ionikh, N. V. Chernysheva, A. V. Meshchanov, A. P. Yalin, R. B. Miles, “Direct evidence for thermal mechanism of plasma influence on shock wave propagation,” Phys. Lett. A 259, 387–392 (1999).
[Crossref]

B. N. Ganguly, P. Bletzinger, A. Garscadden, “Shock wave damping and dispersion in nonequilibrium low pressure argon plasmas,” Phys. Lett. A 230, 218–222 (1997).
[Crossref]

Phys. Rev. E (1)

G. M. Petrov, C. M. Ferreira, “Numerical modeling of the constriction of the dc positive column in rare gases,” Phys. Rev. E 59, 3571–3582 (1999).
[Crossref]

Plasma Sources Sci. Technol. (1)

A. A. Matveev, V. P. Silakov, “Electron energy distribution function in a moderately ionized argon plasma,” Plasma Sources Sci. Technol. 10 (1), 134–146 (2001).
[Crossref]

Rev. Sci. Instrum. (1)

L. P. Bakker, J. M. Freriks, F. J. de Hoog, G. M. W. Kroesen, “Thomson scattering using an atomic notch filter,” Rev. Sci. Instrum. 71, 2007–2014 (2000).
[Crossref]

Sov. Phys. Tech. Phys. (1)

B. Yu. Golubovskii, R. Sonnenburg, “The positive column in an argon discharge,” Sov. Phys. Tech. Phys. 24 (2), 177–180 (1979).

Other (6)

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., (1996).

Y. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1987).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, (1998).

M. Capitelli, Nonequilibrium Vibrational Kinetics (Springer-Verlag, Berlin, 1986).
[Crossref]

A. P. Yalin, “Gas phase and plasma diagnostics based on resonant atomic vapor filters,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 2000).

N. D. Finkelstein, “An ultraviolet laser source and spectral imaging filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Department of Mechanical Engineering and Aerospace, Princeton University, Princeton, N.J., 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the FRS setup. A narrow-linewidth laser is used to illuminate a sample volume, and the scattered light is imaged through a narrow-band atomic or molecular vapor absorption filter onto a detector.

Fig. 2
Fig. 2

Modeled FRS signal levels and filter transmission profile in the 253.7-nm vicinity. The mercury vapor filter has a length of 5 cm, a vapor pressure of 0.0030 Torr, and a temperature of 315 K. The modeled FRS signal levels are for a scattering gas of 50-Torr argon at the indicated temperatures.

Fig. 3
Fig. 3

Modeled FRS signal levels and filter transmission profile shown for the experimentally used (high-frequency) absorption notch. Parameters are as in Fig. 2. The arrow indicates the laser tuning used in the experiments.

Fig. 4
Fig. 4

Graph showing the curve to convert the FRS signal ratio ℛ (measured as plasma on:plasma off) to the unknown plasma-on temperature T M , plotted for T REF = 308 K and for a scatterer of argon at 50 Torr. Also shown is the equivalent curve for unfiltered Rayleigh scattering.

Fig. 5
Fig. 5

Schematic diagram of experimental setups used for (a) point and (b) planar FRS measurements of plasmas. The experiments use the same laser and plasma tube; however, they differ in beam delivery optics and detection system. For the point measurements in (a) we use a monochromator to suppress plasma luminosity and a PMT as the detector. The planar scheme in (b) uses an interference filter to suppress plasma luminosity and a gated intensified CCD (ICCD) camera as the detector.

Fig. 6
Fig. 6

Comparison of FRS measurements (circles) and Rayleigh measurements (squares) of axial temperature of argon discharge. The discharge conditions were at a pressure of 50 Torr and a current of 20 mA. Computed means and standard deviations (std) of the data are given.

Fig. 7
Fig. 7

FRS measurements (circles) of axial temperature in a 50-Torr argon discharge at a range of currents. Rayleigh-scattering data (squares) are also shown. The curve is a calculated temperature profile assuming a Gaussian current-density profile.

Fig. 8
Fig. 8

FRS measurements (circles) of axial temperature in a 50-Torr argon plus 1% nitrogen discharge at a range of currents. Rayleigh-scattering data (squares) are also shown. The curve is a calculated temperature profile assuming a Bessel current-density profile.

Fig. 9
Fig. 9

(a) Temperature image of a diffuse argon plasma obtained by planar FRS. The tube radius is 19 mm, the pressure is 50 Torr, and the current is 20 mA. (b) Planar FRS temperature image of a diffuse argon plus 1% nitrogen plasma at the same conditions except with a current of 40 mA.

Fig. 10
Fig. 10

(a) Radial temperature profile of the diffuse argon plasma obtained by planar FRS. Conditions are as in Figs. 9(a) and 9(b). The data points are found when we average across the image of Fig. 9(a), whereas the curve shown is a fit to the point measurements. (b) FRS temperature profile of the diffuse argon plus 1% nitrogen plasma. The points are found when we average across the image of Fig. 9(b), whereas the curve is a fit to the point measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1rddrrηTdTdr+β jrE=0,
jr=j0J02.405 r/R,
jr=j0exp-ra2-exp-Ra21-exp-Ra2,

Metrics