Abstract

A wavelength-independent method for optical gating, based on the optical Kerr effect, has been demonstrated. Using this method, we produced 100-ps, 10-kW, two-wavelength pulses (10.3 and 10.6 µm) with a signal-to-background ratio contrast of 105 by slicing a long CO2 pulse. The capability of gating consecutive pulses separated on a picosecond time scale with this method is also shown.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
    [CrossRef]
  2. J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
    [CrossRef]
  3. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of the Springer Series in Optical Sciences, 3rd ed. (Springer, New York, 1999) p. 340.
  4. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
    [CrossRef] [PubMed]
  5. M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
    [CrossRef]
  6. P. B. Corkum, “Amplification of picosecond 10 µm pulses in multiatmospheric CO2 lasers,” IEEE J. Quantum Electron. QE-21, 216–232 (1985).
    [CrossRef]
  7. J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
    [CrossRef]
  8. E. Yablonovitch, J. Goldhar, “Short CO2 laser pulse generation by optical free induction decay,” Appl. Phys. Lett. 25, 580–582 (1974).
    [CrossRef]
  9. R. A. Kaindl, D. C. Smith, M. Joschko, M. P. Hasselbeck, M. Woerner, T. Elsaesser, “Femtosecond infrared pulses tunable from 9 to 18 µm at an 88-MHz repetition rate,” Opt. Lett. 23, 861–863 (1998).
    [CrossRef]
  10. A. J. Alcock, P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
    [CrossRef]
  11. I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
    [CrossRef]
  12. C. Rolland, P. B. Corkum, “Generation of 130-fsec midinfrared pulses,” J. Opt. Soc. Am. B 3, 1625–1629 (1986).
    [CrossRef]
  13. S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.
  14. S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
    [CrossRef]
  15. A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19, 898–900 (1994).
    [CrossRef] [PubMed]
  16. K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
    [CrossRef]
  17. G. Mayer, F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. (Paris) 258, 2039 (1964).
  18. P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
    [CrossRef]
  19. T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
    [CrossRef]
  20. M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
    [CrossRef]
  21. R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
    [CrossRef]
  22. D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
    [CrossRef]
  23. T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Sel. Areas Commun. 6, 1186–1198 (1988).
    [CrossRef]
  24. T. Hirose, “Project of polarized positron beams for future linear colliders,” in Proceedings LASERS’98, V. J. Corcoran, T. A. Goldman, (STS, Mclean, Va., 1999), pp. 836–844.
  25. P. A. Belanger, J. Boivin, “Gigawatt peak-power pulse generation by injection of a single short pulse in a regenerative amplifier above threshold (RAAT),” Can. J. Phys. 54, 720–727 (1976).
    [CrossRef]

2001

1998

1995

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

1994

A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19, 898–900 (1994).
[CrossRef] [PubMed]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

1993

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

1991

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

1988

T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Sel. Areas Commun. 6, 1186–1198 (1988).
[CrossRef]

1986

1985

P. B. Corkum, “Amplification of picosecond 10 µm pulses in multiatmospheric CO2 lasers,” IEEE J. Quantum Electron. QE-21, 216–232 (1985).
[CrossRef]

D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
[CrossRef]

1979

A. J. Alcock, P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

1976

R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
[CrossRef]

P. A. Belanger, J. Boivin, “Gigawatt peak-power pulse generation by injection of a single short pulse in a regenerative amplifier above threshold (RAAT),” Can. J. Phys. 54, 720–727 (1976).
[CrossRef]

1975

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

1974

E. Yablonovitch, J. Goldhar, “Short CO2 laser pulse generation by optical free induction decay,” Appl. Phys. Lett. 25, 580–582 (1974).
[CrossRef]

1973

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
[CrossRef]

1969

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

1964

G. Mayer, F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. (Paris) 258, 2039 (1964).

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Alcock, A. J.

A. J. Alcock, P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

Babzien, M.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Belanger, P. A.

P. A. Belanger, J. Boivin, “Gigawatt peak-power pulse generation by injection of a single short pulse in a regenerative amplifier above threshold (RAAT),” Can. J. Phys. 54, 720–727 (1976).
[CrossRef]

Bigio, I. J.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Blue, B.

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Boivin, J.

P. A. Belanger, J. Boivin, “Gigawatt peak-power pulse generation by injection of a single short pulse in a regenerative amplifier above threshold (RAAT),” Can. J. Phys. 54, 720–727 (1976).
[CrossRef]

Burgess, T. J.

T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
[CrossRef]

Clayton, C. E.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Coleman, L. W.

T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
[CrossRef]

Corkum, P. B.

C. Rolland, P. B. Corkum, “Generation of 130-fsec midinfrared pulses,” J. Opt. Soc. Am. B 3, 1625–1629 (1986).
[CrossRef]

P. B. Corkum, “Amplification of picosecond 10 µm pulses in multiatmospheric CO2 lasers,” IEEE J. Quantum Electron. QE-21, 216–232 (1985).
[CrossRef]

A. J. Alcock, P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

Dawson, J. W.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of the Springer Series in Optical Sciences, 3rd ed. (Springer, New York, 1999) p. 340.

Duguay, M. A.

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Dyson, A.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Elezzabi, A. Y.

Elsaesser, T.

Everett, M.

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Fenstermacher, C. H.

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

Figueira, J. F.

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

Filip, C.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Fisher, J.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Gires, F.

G. Mayer, F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. (Paris) 258, 2039 (1964).

Goldhar, J.

E. Yablonovitch, J. Goldhar, “Short CO2 laser pulse generation by optical free induction decay,” Appl. Phys. Lett. 25, 580–582 (1974).
[CrossRef]

Gordon, D.

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of the Springer Series in Optical Sciences, 3rd ed. (Springer, New York, 1999) p. 340.

Hansen, J. W.

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

Harrison, R. F.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Harrison, R. G.

D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
[CrossRef]

Hasselbeck, M. P.

Hirose, T.

T. Hirose, “Project of polarized positron beams for future linear colliders,” in Proceedings LASERS’98, V. J. Corcoran, T. A. Goldman, (STS, Mclean, Va., 1999), pp. 836–844.

Hughes, M. K. Y.

Javan, A.

R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
[CrossRef]

Johnson, S. R.

Joschko, M.

Joshi, C.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Kaindl, R. A.

Kar, A. K.

D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
[CrossRef]

Kurnitt, N. A.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Kusche, K. P.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Lal, A.

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Leemans, W. P.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Maker, P. D.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Marsh, K. A.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Mayer, G.

G. Mayer, F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. (Paris) 258, 2039 (1964).

Meyer, J.

Miller, B. I.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Morioka, T.

T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Sel. Areas Commun. 6, 1186–1198 (1988).
[CrossRef]

Narang, R.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Nazemi, S.

R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
[CrossRef]

Newkirk, M. A.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of the Springer Series in Optical Sciences, 3rd ed. (Springer, New York, 1999) p. 340.

Owen, T. C.

T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
[CrossRef]

Park, N.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Pogorelsky, I. V.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Reichelt, W. H.

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

Richardson, M. C.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Rolland, C.

Sala, K.

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Saruwatari, M.

T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Sel. Areas Commun. 6, 1186–1198 (1988).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Schappert, G. T.

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

Sheffield, R. L.

R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
[CrossRef]

Shimada, T.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

Smith, D. C.

Stratton, T. F.

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Tiemeijer, L. F.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

Tochitsky, S. Ya.

S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO2 amplifier,” Opt. Lett. 26, 813–815 (2001).
[CrossRef]

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

Tratt, D. M.

D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
[CrossRef]

Vahala, K. J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Williams, R.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

Woerner, M.

Yablonovitch, E.

E. Yablonovitch, J. Goldhar, “Short CO2 laser pulse generation by optical free induction decay,” Appl. Phys. Lett. 25, 580–582 (1974).
[CrossRef]

Zhou, J.

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

Appl. Phys. Lett.

L. F. Tiemeijer, “Effects of nonlinear gain on four-wave mixing and asymmetric gain saturation in a semiconductor laser amplifier,” Appl. Phys. Lett. 59, 499–501 (1991).
[CrossRef]

J. Zhou, N. Park, J. W. Dawson, K. J. Vahala, M. A. Newkirk, B. I. Miller, “Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier,” Appl. Phys. Lett. 63, 1179–1181 (1993).
[CrossRef]

J. F. Figueira, W. H. Reichelt, G. T. Schappert, T. F. Stratton, C. H. Fenstermacher, “Nanosecond pulse amplification in electron-beam-pumped CO2 amplifiers,” Appl. Phys. Lett. 22, 216–218 (1973).
[CrossRef]

E. Yablonovitch, J. Goldhar, “Short CO2 laser pulse generation by optical free induction decay,” Appl. Phys. Lett. 25, 580–582 (1974).
[CrossRef]

T. C. Owen, L. W. Coleman, T. J. Burgess, “Ultrafast optical Kerr effect in CS2 at 10.6 µm,” Appl. Phys. Lett. 22, 272–273 (1973).
[CrossRef]

M. A. Duguay, J. W. Hansen, “An ultrafast light gate,” Appl. Phys. Lett. 15, 192–194 (1969).
[CrossRef]

R. L. Sheffield, S. Nazemi, A. Javan, “An independently controllable multiline laser resonator and its use in multifrequency injection locking,” Appl. Phys. Lett. 29, 588–590 (1976).
[CrossRef]

C. R. Acad. Sci. (Paris)

G. Mayer, F. Gires, “Action d’une onde lumineuse intense sur l’indice de refraction des liquides,” C. R. Acad. Sci. (Paris) 258, 2039 (1964).

Can. J. Phys.

P. A. Belanger, J. Boivin, “Gigawatt peak-power pulse generation by injection of a single short pulse in a regenerative amplifier above threshold (RAAT),” Can. J. Phys. 54, 720–727 (1976).
[CrossRef]

A. J. Alcock, P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

IEEE J. Quantum Electron.

I. V. Pogorelsky, J. Fisher, K. P. Kusche, M. Babzien, N. A. Kurnitt, I. J. Bigio, R. F. Harrison, T. Shimada, “Subnanosecond multi-gigawatt CO2 laser,” IEEE J. Quantum Electron. QE-31, 556–566 (1995).
[CrossRef]

P. B. Corkum, “Amplification of picosecond 10 µm pulses in multiatmospheric CO2 lasers,” IEEE J. Quantum Electron. QE-21, 216–232 (1985).
[CrossRef]

IEEE J. Sel. Areas Commun.

T. Morioka, M. Saruwatari, “Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE J. Sel. Areas Commun. 6, 1186–1198 (1988).
[CrossRef]

J. Opt. Soc. Am. B

Nature (London)

M. Everett, A. Lal, D. Gordon, C. E. Clayton, K. A. Marsh, C. Joshi, “Trapped electron acceleration by a laser-driven relativistic plasma wave,” Nature (London) 368, 527–529 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. A

K. Sala, M. C. Richardson, “Optical Kerr effect induced by ultrashort laser pulses,” Phys. Rev. A 12, 1036–1047 (1975).
[CrossRef]

Phys. Rev. Lett.

C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993).
[CrossRef] [PubMed]

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12, 507–509 (1964).
[CrossRef]

Prog. Quantum Electron.

D. M. Tratt, A. K. Kar, R. G. Harrison, “Spectral control of gain-switched lasers by injection-seeding: application to TEA CO2 systems,” Prog. Quantum Electron. 10, 229–265 (1985).
[CrossRef]

Other

V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of the Springer Series in Optical Sciences, 3rd ed. (Springer, New York, 1999) p. 340.

S. Ya. Tochitsky, R. Narang, C. Filip, B. Blue, C. E. Clayton, K. A. Marsh, C. Joshi, “Amplification of two-wavelength CO2 laser pulses to terawatt level,” in Proceedings LASERS’99, V. J. Corcoran, T. A. Corcoran, eds. (STS, McLean, Va., 2000), pp. 265–272.

T. Hirose, “Project of polarized positron beams for future linear colliders,” in Proceedings LASERS’98, V. J. Corcoran, T. A. Goldman, (STS, Mclean, Va., 1999), pp. 836–844.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup for Kerr modulation of a two-wavelength CO2 laser pulse. LPDS, low-pressure discharge sections; M, mirror; TEA, transversely excited atmosphere.

Fig. 2
Fig. 2

Temporal dynamics of the pulses involved in the gating process: (a) the relative timing between the 10.6- and the 10.3-µm probe pulses from the CO2 laser and the 1-µm pump pulse (the 10.3-µm trace is inverted); (b) switched-out CO2 pulse as recorded by a fast detector after the Kerr modulator.

Fig. 3
Fig. 3

Temporal profile of the switched-out 658-nm pulse recorded with a streak camera at three different pump intensities. These intensities correspond to a rotation of the polarization of the probe pulse of (a) π/2 rad, (b) π rad, and (c) 3π/2 rad.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Tt=A sin22.34×106πLλ n2Ipumpt,

Metrics