Abstract

The generation of white-light continuum by femtosecond laser pulses in transparent condensed media is investigated comprehensively with 262-, 393-, and 785-nm pump wavelengths. We find that the ratio of the medium’s bandgap energy to the photon energy of the incident wavelength determines the amount of anti-Stokes broadening, independently of the pump wavelength and the medium’s bandgap. It is also shown that, although the amount of anti-Stokes broadening is greater for the longer pump wavelength, the shorter pump wavelength is more advantageous for generating shorter-wavelength continua in the UV region. In addition, a self-induced change in polarization of the white-light continuum that is generated is observed in an isotropic material with a cubic crystal structure, such as CaF2 and LiF. After the investigation of polarization, the frequency chirp of the continuum is characterized by the Kerr-gate method with 70-fs temporal and 10-nm wavelength resolution.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  2. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
    [CrossRef] [PubMed]
  3. P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [CrossRef] [PubMed]
  4. H. Nishioka, W. Odajima, K. Ueda, H. Takuma, “Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses,” Opt. Lett. 20, 2505–2507 (1995).
    [CrossRef] [PubMed]
  5. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
    [CrossRef]
  6. V. I. Klimov, D. W. McBranch, “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers,” Opt. Lett. 23, 277–279 (1998).
    [CrossRef]
  7. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
    [CrossRef]
  8. R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtosecond by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
    [CrossRef] [PubMed]
  9. E. T. J. Nibbering, O. Dühr, G. Korn, “Generation of intense tunable 20-fs near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1337 (1997).
    [CrossRef]
  10. V. V. Yakovlev, B. Kohler, K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19, 2000–2002 (1994).
    [CrossRef] [PubMed]
  11. M. K. Reed, M. K. Steiner-Shepard, D. K. Negus, “Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier,” Opt. Lett. 19, 1885–1857 (1994).
    [CrossRef]
  12. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
    [CrossRef]
  13. G. Y. Yang, Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
    [CrossRef] [PubMed]
  14. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
    [CrossRef]
  15. W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
    [CrossRef]
  16. A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
    [CrossRef]
  17. A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
    [CrossRef]
  18. A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [CrossRef]
  19. A. Brodeur, S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).
  21. R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
    [CrossRef]
  22. R. H. Stolen, J. Botineau, A. Askin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
    [CrossRef] [PubMed]
  23. B. Nikolaus, D. Grischkowsky, A. C. Balant, “Optical pulse reshaping based on the nonlinear birefregence of single-mode optical fibers,” Opt. Lett. 8, 189–191 (1983).
    [CrossRef] [PubMed]
  24. T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
    [CrossRef]
  25. H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
    [CrossRef]
  26. D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
    [CrossRef]

2000 (2)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

1999 (2)

A. Brodeur, S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

1998 (2)

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

V. I. Klimov, D. W. McBranch, “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers,” Opt. Lett. 23, 277–279 (1998).
[CrossRef]

1997 (1)

1995 (1)

1994 (2)

1993 (1)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

1992 (1)

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

1991 (1)

T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
[CrossRef]

1987 (1)

1986 (1)

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

1984 (1)

1983 (2)

1982 (1)

1977 (1)

W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

1975 (1)

A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[CrossRef]

1973 (2)

A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

1970 (2)

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Albrecht, H.-St.

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

Albrecht, T. F.

T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
[CrossRef]

Alfano, R. R.

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

André, Y.-B.

Askin, A.

Balant, A. C.

Becker, P. C.

Bloembergen, N.

W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

Botineau, J.

Brito Cruz, C. H.

Brodeur, A.

A. Brodeur, S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Chin, S. L.

A. Brodeur, S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
[CrossRef]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

Corkum, P. B.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

Dühr, O.

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

Fork, R. L.

Franco, M.

Grischkowsky, D.

Heist, P.

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

Hirlimann, C.

Kaiser, W.

A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Kane, D. J.

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

Kasparian, J.

Kleinschmidt, J.

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

Klimov, V. I.

Kohler, B.

Korn, G.

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

Kurz, H.

T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
[CrossRef]

Laubereau, A.

A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Liu, P.

W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

McBranch, D. W.

Mondelain, D.

Mysyrowicz, A.

Negus, D. K.

Nibbering, E. T. J.

Niedermeier, S.

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Nikolaus, B.

Nishioka, H.

Odajima, W.

Penzkofer, A.

A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[CrossRef]

A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

Prade, B.

Rairoux, P.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Reed, M. K.

Rodriguez, M.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

Rolland, C.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Ronneberger, F.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Ruthmann, J.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

Sauerbrey, R.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

Schillinger, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Schröder, T.

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

Seibert, K.

T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
[CrossRef]

Seilmeier, A.

A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[CrossRef]

Shank, C. V.

Shapiro, S. L.

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Shen, Y. R.

Smith, W. L.

W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

Stein, B.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Steiner-Shepard, M. K.

Stolen, R. H.

Takuma, H.

Tomlinson, W. J.

Trebino, R.

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

Tzortzakis, S.

Ueda, K.

van Lap, D.

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

Waite, D.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Wedekind, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Wille, H.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

Wilson, K. R.

Wolf, J.-P.

Wöste, L.

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Yakovlev, V. V.

Yang, G. Y.

Yen, R.

Yu, J.

Ziener, C.

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

Appl. Phys. B (2)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B 71, 573–580 (2000).
[CrossRef]

H.-St. Albrecht, P. Heist, J. Kleinschmidt, D. van Lap, T. Schröder, “Measurement of ultraviolet femtosecond pulses using the optical Kerr effect,” Appl. Phys. B 55, 362–364 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kane, R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571–579 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

T. F. Albrecht, K. Seibert, H. Kurz, “Chirp measurement of large-bandwidth femtosecond optical pulses using two-photon absorption,” Opt. Commun. 84, 223–227 (1991).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8, 285–288 (1973).
[CrossRef]

A. Penzkofer, A. Seilmeier, W. Kaiser, “Parametric four-photon generation of picosecond light at high conversion efficiency,” Opt. Commun. 14, 363–367 (1975).
[CrossRef]

Opt. Lett. (11)

G. Y. Yang, Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
[CrossRef] [PubMed]

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, “Femtosecond white-light continuum pulses,” Opt. Lett. 8, 1–3 (1983).
[CrossRef] [PubMed]

H. Nishioka, W. Odajima, K. Ueda, H. Takuma, “Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses,” Opt. Lett. 20, 2505–2507 (1995).
[CrossRef] [PubMed]

J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. André, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Wöste, “Infrared extension of the supercontinuum generated by femtosecond terrawatt laser pulses propagating in the atmosphere,” Opt. Lett. 25, 1397–1399 (2000).
[CrossRef]

V. I. Klimov, D. W. McBranch, “Femtosecond high-sensitivity, chirp-free transient absorption spectroscopy using kilohertz lasers,” Opt. Lett. 23, 277–279 (1998).
[CrossRef]

R. L. Fork, C. H. Brito Cruz, P. C. Becker, C. V. Shank, “Compression of optical pulses to six femtosecond by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987).
[CrossRef] [PubMed]

E. T. J. Nibbering, O. Dühr, G. Korn, “Generation of intense tunable 20-fs near 400 nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22, 1335–1337 (1997).
[CrossRef]

V. V. Yakovlev, B. Kohler, K. R. Wilson, “Broadly tunable 30-fs pulses produced by optical parametric amplification,” Opt. Lett. 19, 2000–2002 (1994).
[CrossRef] [PubMed]

M. K. Reed, M. K. Steiner-Shepard, D. K. Negus, “Widely tunable femtosecond optical parametric amplifier at 250 kHz with a Ti:sapphire regenerative amplifier,” Opt. Lett. 19, 1885–1857 (1994).
[CrossRef]

R. H. Stolen, J. Botineau, A. Askin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
[CrossRef] [PubMed]

B. Nikolaus, D. Grischkowsky, A. C. Balant, “Optical pulse reshaping based on the nonlinear birefregence of single-mode optical fibers,” Opt. Lett. 8, 189–191 (1983).
[CrossRef] [PubMed]

Phys. Rev. A (2)

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59, 2369–2384 (1999).
[CrossRef]

W. L. Smith, P. Liu, N. Bloembergen, “Superbroadening in H2O and D2O by a self-focused picosecond pulse YAlG:Nd laser,” Phys. Rev. A 15, 2396–2403 (1977).
[CrossRef]

Phys. Rev. Lett. (5)

A. Penzkofer, A. Laubereau, W. Kaiser, “Stimulated short-wavelength radiation due to single frequency resonances of χ(3),” Phys. Rev. Lett. 31, 863–866 (1973).
[CrossRef]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[CrossRef]

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[CrossRef] [PubMed]

R. R. Alfano, S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

R. R. Alfano, S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24, 592–594 (1970).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, Calif., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

White-light continuum spectra in various condensed media. The incident pump wavelength and intensity are 393 nm and 1.5 × 1012 W/cm2, respectively.

Fig. 2
Fig. 2

Anti-Stokes broadening as a function of the bandgap of the medium in which the continuum is generated. Filled and open points were obtained with incident intensities of 1.5 × 1012 and 1.0 × 1013 W/cm2, respectively.

Fig. 3
Fig. 3

Anti-Stokes broadening as a function of the bandgap for three incident wavelengths, 262 nm (thin curve), 393 nm (medium curve), and 789 nm (thick curve).

Fig. 4
Fig. 4

Anti-Stokes broadening as a function of the energy ratio of the medium’s bandgap to the incident photon for three incident wavelengths, 262 nm (thin curve), 393 nm (medium curve), and 789 nm (thick curve).

Fig. 5
Fig. 5

Nonlinear absorption as a function of the medium’s bandgap at incident intensities of 1.5 × 1012 (thin curve) and 1.0 × 1013 W/cm2 (thick curve).

Fig. 6
Fig. 6

Spectral range of white-light continua produced in various condensed media for three incident wavelengths, 262 (3W), 393 (2W), and 785 nm (1W) at a focused intensity of the order of 1013 W/cm2.

Fig. 7
Fig. 7

(a) Experimental and (b) theoretical results of intensity transmitted through the polarizer as a function of input polarization angle.

Fig. 8
Fig. 8

Chip characteristic of the continuum generated in water with a 393-nm intensity of 1013 W/cm2. The dark horizontal bar that appears at approximately 785 nm is due to an experimental artifact for the protection of the CCD from strong incident wavelength.

Fig. 9
Fig. 9

Comparison of theoretically calculated group delays with the experimental group delay.

Fig. 10
Fig. 10

Measured cross-correlation waveforms at 310, 340, and 400 nm with a 0.1-mm fused-silica Kerr medium. The gate pulse width was 70 fs.

Tables (1)

Tables Icon

Table 1 Comparison of Medium Length and Self-Focusing Length at 400 nm in Various Materials for Two Incident Intensitiesa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Zsf=0.367kω02P/Pcr-0.8522-0.02191/2,
Pcr=3.77λ28πn0n2
T=sin2ΔϕNL/2sin22θ
ΔθNL=2πL3λ n2Icos2 θ-sin2 θ,

Metrics