Abstract

Midwave and long-wave infrared propagation were measured in the marine atmosphere close to the surface of the ocean. Data were collected near San Diego Bay for two weeks in November 1996 over a 15-km horizontal path. The data are interpreted in terms of effects expected from molecules, aerosol particles, and refraction. Aerosol particles are a dominant influence in this coastal zone. They induce a diurnal variation in transmission as their character changes with regular changes in wind direction. A refractive propagation factor calculation is introduced, and it is systematically applied to the model and to the data analysis. It is shown that this refractive propagation factor is a necessary component of a complete near-sea-surface infrared transmission model.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).
  2. G. B. Matthews, “Comparisons of atmospheric transmittance and visibility data collected at San Nicolas Island during the May 1979 OSP/EOMET high mode operation,” Tech. Rep. TP-82-16 (Pacific Missile Test Center, Pt. Mugu, Calif., 1982).
  3. S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy Aerosol Model,” Opt. Eng. 22, 57–62 (1983).
    [CrossRef]
  4. D. E. Kerr, Propagation of Short Radio Waves (McGraw-Hill, New York, 1951).
  5. D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
    [CrossRef]
  6. All times in this paper are in universal time.
  7. One of the parameters required by the Navy Aerosol Model is derived from radon activity.
  8. A. N. de Jong, P. J. Fritz, “EOPACE transmission experiments spring 1996; preliminary results,” Tech. Rep. FEL-96-A090 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1997), pp. 1–46.
  9. A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.
  10. H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.
  11. C. R. Zeisse, B. D. Nener, R. V. Dewees, “Measurement of low-altitude infrared propagation,” Appl. Opt. 39, 873–886 (2000), Fig. 4.
  12. Models CSASP-200 and CSASP-100-HV, Particle Measuring Systems Inc., 5475 Airport Blvd., Boulder, Colo. 80301-2339.
  13. S. G. Gathman, “The effects of the marine aerosol on infrared propagation over the world ocean,” Oceanologia 41, 489–513 (1999).
  14. S. G. Gathman, M. H. Smith, “On the nature of surf generated aerosol and their effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bisonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
    [CrossRef]
  15. G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
    [CrossRef]
  16. A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).
  17. F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  18. G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
  19. E. Vignati, “Modelling interactions between aerosols and gaseous compounds in the polluted marine atmosphere,” Tech. Rep. Risø-R-1163(EN) (Risø National Laboratory, Copenhagen, 1999).
  20. L. T. Rogers, “Effects of variability of atmospheric refractivity on propagation estimates,” IEEE Trans. Antennas Propag. 44, 460–465 (1996).
    [CrossRef]
  21. G. de Leeuw, “Vertical profiles of giant particles close above the sea surface,” Tellus Ser. B 38, 51–61 (1986).
    [CrossRef]
  22. G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987).
    [CrossRef]
  23. F. E. Volz, “Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and fly ash,” Appl. Opt. 12, 564–568 (1973).
    [CrossRef] [PubMed]
  24. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1977).
  25. G. M. Hale, M. R. Query, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  26. G. de Leeuw, “North-Sea project II. Aerosol measurements aboard a ship and calculated optical and infrared properties of the marine atmosphere,” Tech. Rep. PHL 1983-11 (Physics Laboratory TNO, The Hague, The Netherlands, 1983).
  27. D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
    [CrossRef]
  28. S. Hammel, “Sensitivity analysis for infrared propagation,” Tech. Rep. 2989 (Spawar Systems Center, San Diego, Calif, 1998), pp. 601–610.
  29. W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
    [CrossRef]
  30. Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990).
    [CrossRef]
  31. Y. A. Kravtsov, Y. I. Orlov, Caustics, Catastrophes and Wave Fields (Springer, New York, 1998).
  32. Compare Ref. 11 and Figs. 5 and 6. The data for these two figures were obtained during our November 1996 experiment but have not been included in the present paper because they occurred during the power outage at the Imperial Beach Pier.
  33. C. R. Zeisse, “Grazing reflectivity of the wind-ruffled sea,” Tech. Rep. 1843 (Space and Naval Warfare Systems Center, San Diego, Calif., 2000).

2001 (1)

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

2000 (2)

C. R. Zeisse, B. D. Nener, R. V. Dewees, “Measurement of low-altitude infrared propagation,” Appl. Opt. 39, 873–886 (2000), Fig. 4.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

1999 (1)

S. G. Gathman, “The effects of the marine aerosol on infrared propagation over the world ocean,” Oceanologia 41, 489–513 (1999).

1996 (1)

L. T. Rogers, “Effects of variability of atmospheric refractivity on propagation estimates,” IEEE Trans. Antennas Propag. 44, 460–465 (1996).
[CrossRef]

1987 (1)

G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987).
[CrossRef]

1986 (1)

G. de Leeuw, “Vertical profiles of giant particles close above the sea surface,” Tellus Ser. B 38, 51–61 (1986).
[CrossRef]

1983 (2)

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy Aerosol Model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

1979 (1)

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

1973 (2)

1908 (1)

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

Abreu, L. W.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Akkerman, A.

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

Anderson, G. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Businger, J. A.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

Chetwynd, J. H.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Clough, S. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

de Jong, A. N.

A. N. de Jong, P. J. Fritz, “EOPACE transmission experiments spring 1996; preliminary results,” Tech. Rep. FEL-96-A090 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1997), pp. 1–46.

A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.

de Leeuw, G.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987).
[CrossRef]

G. de Leeuw, “Vertical profiles of giant particles close above the sea surface,” Tellus Ser. B 38, 51–61 (1986).
[CrossRef]

G. de Leeuw, “North-Sea project II. Aerosol measurements aboard a ship and calculated optical and infrared properties of the marine atmosphere,” Tech. Rep. PHL 1983-11 (Physics Laboratory TNO, The Hague, The Netherlands, 1983).

de Violini, R.

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

Dewees, R. V.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1977).

Fleming, R. H.

H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.

Frederickson, P. A.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Fritz, P. J.

A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.

A. N. de Jong, P. J. Fritz, “EOPACE transmission experiments spring 1996; preliminary results,” Tech. Rep. FEL-96-A090 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1997), pp. 1–46.

Gallery, W. O.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Gathman, S. G.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

S. G. Gathman, “The effects of the marine aerosol on infrared propagation over the world ocean,” Oceanologia 41, 489–513 (1999).

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy Aerosol Model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

S. G. Gathman, M. H. Smith, “On the nature of surf generated aerosol and their effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bisonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

Hale, G. M.

Hammel, S.

S. Hammel, “Sensitivity analysis for infrared propagation,” Tech. Rep. 2989 (Spawar Systems Center, San Diego, Calif, 1998), pp. 601–610.

Hill, M.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

Jeck, R.

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

Jensen, D. R.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

Johnson, M. W.

H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.

Katsaros, K. B.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

Kerr, D. E.

D. E. Kerr, Propagation of Short Radio Waves (McGraw-Hill, New York, 1951).

Kneizys, F. X.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Kravtsov, Y. A.

Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990).
[CrossRef]

Y. A. Kravtsov, Y. I. Orlov, Caustics, Catastrophes and Wave Fields (Springer, New York, 1998).

Lamberts, C. W.

G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987).
[CrossRef]

Liu, W. T.

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

Matthews, G. B.

G. B. Matthews, “Comparisons of atmospheric transmittance and visibility data collected at San Nicolas Island during the May 1979 OSP/EOMET high mode operation,” Tech. Rep. TP-82-16 (Pacific Missile Test Center, Pt. Mugu, Calif., 1982).

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

McGrath, C. P.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

Moerman, M. M.

A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.

Neele, F. P.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

Nener, B. D.

Orlov, Y. I.

Y. A. Kravtsov, Y. I. Orlov, Caustics, Catastrophes and Wave Fields (Springer, New York, 1998).

Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990).
[CrossRef]

Query, M. R.

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

Rogers, L. T.

L. T. Rogers, “Effects of variability of atmospheric refractivity on propagation estimates,” IEEE Trans. Antennas Propag. 44, 460–465 (1996).
[CrossRef]

Roos, M. J. J.

A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.

Rosenthal, J.

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

Schacher, G.

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

Selby, J. E. A.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1977).

Smith, M. H.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

S. G. Gathman, M. H. Smith, “On the nature of surf generated aerosol and their effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bisonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

Sverdrup, H. U.

H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.

Trusty, G.

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

Vignati, E.

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

E. Vignati, “Modelling interactions between aerosols and gaseous compounds in the polluted marine atmosphere,” Tech. Rep. Risø-R-1163(EN) (Risø National Laboratory, Copenhagen, 1999).

Volz, F. E.

Williams, B. E.

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

Zeisse, C. R.

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

C. R. Zeisse, B. D. Nener, R. V. Dewees, “Measurement of low-altitude infrared propagation,” Appl. Opt. 39, 873–886 (2000), Fig. 4.

C. R. Zeisse, “Grazing reflectivity of the wind-ruffled sea,” Tech. Rep. 1843 (Space and Naval Warfare Systems Center, San Diego, Calif., 2000).

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

Appl. Opt. (3)

IEEE Trans. Antennas Propag. (1)

L. T. Rogers, “Effects of variability of atmospheric refractivity on propagation estimates,” IEEE Trans. Antennas Propag. 44, 460–465 (1996).
[CrossRef]

J. Aerosol Sci. (1)

G. de Leeuw, C. W. Lamberts, “Influence of refractive index and particle size interval on Mie calculated backscatter and extinction,” J. Aerosol Sci. 18, 131–138 (1987).
[CrossRef]

J. Atmos. Sci. (1)

W. T. Liu, K. B. Katsaros, J. A. Businger, “Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface,” J. Atmos. Sci. 36, 1722–1735 (1979).
[CrossRef]

J. Geophys. Res. (1)

G. de Leeuw, F. P. Neele, M. Hill, M. H. Smith, E. Vignati, “Sea spray aerosol production by waves breaking in the surf zone,” J. Geophys. Res. 105, 29397–29409 (2000).
[CrossRef]

Oceanologia (1)

S. G. Gathman, “The effects of the marine aerosol on infrared propagation over the world ocean,” Oceanologia 41, 489–513 (1999).

Opt. Eng. (3)

S. G. Gathman, “Optical properties of the marine aerosol as predicted by the Navy Aerosol Model,” Opt. Eng. 22, 57–62 (1983).
[CrossRef]

D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. de Leeuw, M. H. Smith, P. A. Frederickson, “Electro-optical propagation assessment in coastal environments (EOPACE) overview and initial accomplishments,” Opt. Eng. 40, 1486–1498 (2001).
[CrossRef]

D. R. Jensen, R. Jeck, G. Trusty, G. Schacher, “Inter-comparison of Particle Measuring Systems, Inc.’s particle-size spectrometer,” Opt. Eng. 22, 746–752 (1983).
[CrossRef]

Tellus Ser. B (1)

G. de Leeuw, “Vertical profiles of giant particles close above the sea surface,” Tellus Ser. B 38, 51–61 (1986).
[CrossRef]

Other (20)

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effect of humidity variations on their optical properties,” Tech. Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1977).

S. Hammel, “Sensitivity analysis for infrared propagation,” Tech. Rep. 2989 (Spawar Systems Center, San Diego, Calif, 1998), pp. 601–610.

G. de Leeuw, “North-Sea project II. Aerosol measurements aboard a ship and calculated optical and infrared properties of the marine atmosphere,” Tech. Rep. PHL 1983-11 (Physics Laboratory TNO, The Hague, The Netherlands, 1983).

Y. A. Kravtsov, Y. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, New York, 1990).
[CrossRef]

Y. A. Kravtsov, Y. I. Orlov, Caustics, Catastrophes and Wave Fields (Springer, New York, 1998).

Compare Ref. 11 and Figs. 5 and 6. The data for these two figures were obtained during our November 1996 experiment but have not been included in the present paper because they occurred during the power outage at the Imperial Beach Pier.

C. R. Zeisse, “Grazing reflectivity of the wind-ruffled sea,” Tech. Rep. 1843 (Space and Naval Warfare Systems Center, San Diego, Calif., 2000).

All times in this paper are in universal time.

One of the parameters required by the Navy Aerosol Model is derived from radon activity.

A. N. de Jong, P. J. Fritz, “EOPACE transmission experiments spring 1996; preliminary results,” Tech. Rep. FEL-96-A090 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1997), pp. 1–46.

A. N. de Jong, P. J. Fritz, M. M. Moerman, M. J. J. Roos, “Transmission experiments during EOPACE, November 1996 and August/September 1997; preliminary results,” Tech. Rep. FEL-96-A269 (TNO Physics and Electronics Laboratory, The Hague, The Netherlands, 1998), p. 13 ff.

H. U. Sverdrup, M. W. Johnson, R. H. Fleming, The Oceans, Their Physics, Chemistry, and General Biology (Prentice-Hall, Englewood Cliffs, N. J., 1942), p. 128.

D. E. Kerr, Propagation of Short Radio Waves (McGraw-Hill, New York, 1951).

G. B. Matthews, B. E. Williams, A. Akkerman, J. Rosenthal, R. de Violini, “Atmospheric transmission and supporting meteorology in the marine environment at San Nicolas Island,” Tech. Rep. TP-79-19 (Pacific Missile Test Center, Pt. Mugu, Calif., 1978).

G. B. Matthews, “Comparisons of atmospheric transmittance and visibility data collected at San Nicolas Island during the May 1979 OSP/EOMET high mode operation,” Tech. Rep. TP-82-16 (Pacific Missile Test Center, Pt. Mugu, Calif., 1982).

S. G. Gathman, M. H. Smith, “On the nature of surf generated aerosol and their effect on electro-optical systems,” in Propagation and Imaging through the Atmosphere, L. R. Bisonnette, C. Dainty, eds., Proc. SPIE3125, 2–13 (1997).
[CrossRef]

Models CSASP-200 and CSASP-100-HV, Particle Measuring Systems Inc., 5475 Airport Blvd., Boulder, Colo. 80301-2339.

A. Berk, L. S. Bernstein, D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN 7,” Tech. Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1989).

F. X. Kneizys, E. P. Shettle, L. W. Abreu, J. H. Chetwynd, G. P. Anderson, W. O. Gallery, J. E. A. Selby, S. A. Clough, “Users guide to LOWTRAN 7,” Tech. Rep. AFGL-TR-88-0177 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

E. Vignati, “Modelling interactions between aerosols and gaseous compounds in the polluted marine atmosphere,” Tech. Rep. Risø-R-1163(EN) (Risø National Laboratory, Copenhagen, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Overhead view of Zuniga Shoals just outside San Diego Bay showing two low-altitude paths used to measure infrared propagation during November 1996. The short path was 7 km long and the long path was 15 km long.

Fig. 2
Fig. 2

System responsivity (curve r) in the midwave band for the long-path transmissometer. The curve was normalized to unity at its maximum. This curve is the product of the spectral radiance of the source, the spectral transmission of the filter, and the spectral responsivity of the detector. The shaded area represents the transmission of an aerosol-free atmosphere calculated by modtran 3.5 for a temperature of 20°C, an absolute humidity of 10 g m-3, and a range of 15 km.

Fig. 3
Fig. 3

Same as Fig. 2 but for the long-wave band.

Fig. 4
Fig. 4

Meteorological data, observed signal, and calculated transmission for the entire experimental period. No data were included, nor calculations made, for day 320 because of a failure of the aerosol particle counters during that interval. The upper two panels show meteorological data recorded at the flux buoy. The bottom two panels show how the measured signal (black curve) compares with the transmission calculated for clear air (blue curve) and for air containing aerosol particles (red curve).

Fig. 5
Fig. 5

Three days of meteorological data measured at the flux buoy at the center of the long propagation path. Q is the absolute humidity and T air - T sea is the air-sea temperature difference (ASTD). The light and shaded bands indicate local day and night, respectively. (Each shaded band begins at local sunset and ends at local sunrise.) The upper panel shows how the wind tended to come from the land during the night and from the sea during the day. The middle panel shows a period of constant (99%) relative humidity from 318.3 to 318.5 when there was fog. The three dashed vertical lines in the upper panel show when the aerosol data in Figs. 8 and 9 were measured.

Fig. 6
Fig. 6

Transmission and signal data in the midwave band for the three days shown in Fig. 5. Upper panel: curve, extinction at 4.0 µm calculated from aerosol number distributions measured at the Imperial Beach Pier; dots, extinction at 4.0 µm predicted by the Navy Aerosol Model (NAM). Middle panel: curve, aerosol transmission corresponding to the curve in the upper panel; dots, molecular transmission calculated by modtran for the responsivity given by the solid curve in Fig 2. Bottom panel: dots, product of the two transmission values shown in the middle panel; curve, measured signal. The dashed vertical lines have the same meaning as in Fig. 5. A signal of 1.0 corresponds to the free-space signal.

Fig. 7
Fig. 7

Broadband molecular transmission as a function of absolute humidity for a 15-km path. These curves were calculated with modtran 3.5 for the responsivities shown in Figs. 2 and 3. Data for a temperature of 10°C are shown by triangles, data for a temperature of 20°C are shown by circles, and data for a temperature of 30°C are shown by squares. (No temperature dependence is shown for the midwave band because all three curves would closely overlap the one shown for 20°C.) Ranges of absolute humidity observed at the flux buoy during the experiment are indicated just above the x axis: The vertical tick is at the mean, the solid curve spans the mean ± 1 standard deviation, and the dashed line spans the minimum to maximum.

Fig. 8
Fig. 8

Aerosol number distributions measured at the Imperial Beach Pier for three different times during day 317 (12 November 1996). The circles are for 1400 UT, the plus signs are for 1600 UT, and the triangles are for 1800 UT. The vertical dashed lines in Figs. 5 and 6 also indicate these three times. Beyond approximately 30 µm the data become quite noisy because of the poor counting statistics: Over a 10-min period the counter may capture only one or two particles of such large diameter.

Fig. 9
Fig. 9

Symbols show the data of Fig. 8 presented as an area distribution (left ordinate). The curves show Mie efficiency factors for extinction (right ordinate). Solid curve, Mie factor at a wavelength of 4.0 µm for an aerosol particle with a complex refractive index of (1.448) - i(0.002194). Dashed curve, Mie factor at a wavelength of 10.6 µm for an aerosol particle with a complex refractive index of (1.444) - i(0.0716). The extinction coefficient for each wavelength is proportional to the area under the product of a Mie efficiency factor for that wavelength and a particle area distribution.

Fig. 10
Fig. 10

Observations of signal (open circles) compared with calculations of transmission (solid curve) during part of day 318. The calculated clear-air transmission is shown as the dashed line.

Fig. 11
Fig. 11

(a) Ray trace computed for day 322, 12:35 UT. The ray trace is typical of a subrefractive condition in which an inferior mirage occurs. Note that the range is 16 km whereas the height is 20 m. Two different rays are shown with the heavier curves corresponding to the appearance of an erect image and an inverted mirage image of the point at range 15.7 km and height 10.7 m. (b) A transfer function for the ray trace shown in (a). The transfer function relationship is a map from the refractive apparent angular position (θrefract) to the geometric atmosphere-free angular position (θgeom).

Fig. 12
Fig. 12

Definition of a geometric ray and a refracted ray and the associated ray angles. There are two different rays between the receiver point and the transmitter point. The straight line ρgeom is propagated in a free-space medium (n ≡ 1) and ρrefract corresponds to a ray in a medium with vertical refractivity gradients. The angles θgeom and θrefract are measured from the horizontal plane and the corresponding ray.

Fig. 13
Fig. 13

Height versus gain calculation that shows the sensitivity of the calculation to small changes in transmitter height. At point A at an 8-m height, the propagation factor is zero, whereas at point B at a 9-m height, the propagation factor is F 2 > 6.0. The vertical dashed line represents the free-space signal level.

Fig. 14
Fig. 14

Sequence of observations for the midwave band over an 11-h period is shown as open circles. Two predictions are compared: transmission τ and the refractive propagation correction σ. For the upper panel, the rms error for transmission prediction is 0.27 whereas the rms error for the signal with refractive correction is 0.12. ASTD, air-sea temperature difference.

Fig. 15
Fig. 15

Sequence of field observations for the midwave band over a 4-h, period that culminates with the signal exceeding the free-space value. For the interval shown, we find that the transmission rms error is 0.57, whereas the signal with refractive correction has a rms error of 0.79. The refractively corrected point at the right end of the sequence is shown with a value of 2, but the actual value was somewhat larger than 2. ASTD, air-sea temperature difference.

Fig. 16
Fig. 16

Frequency distribution for the midwave observed signal, calculated transmission, and calculated signal, plotted on a logarithmic scale. The calculated signal σ is a better fit to the data than the calculated transmission τ.

Fig. 17
Fig. 17

Frequency distribution for the long-wave observed signal, calculated transmission, and calculated signal, plotted on a logarithmic scale.

Fig. 18
Fig. 18

Cross correlation between T air - T sea and F cal 2, shown for the entire midwave data set. The diamonds show the mean value of F 2 calculated for each temperature difference bin of width 0.1, -4.5 ≤ T air - T sea ≤ 3.0. Note in particular that T air - T sea ≤ 0 implies that F cal ≥ 1.0, and T air - T sea ≥ 0 implies F cal ≤ 1.0.

Fig. 19
Fig. 19

Derived propagation factor F obs for the midwave infrared signal intensity data from the entire experiment is directly compared with the propagation factor F cal from the refractive effects model. Only the mean value for each T air - T sea bin is shown. The cross correlation between averaged values of Fobs2¯ and Fcal2¯ is P = 0.88.

Tables (6)

Tables Icon

Table 1 Transmissometer Characteristicsa

Tables Icon

Table 2 Buoy Meteorology Instruments and their Mounting Heights (m)

Tables Icon

Table 3 Statistics for Meteorological Measurements (1994 Observations) Made at the Flux Buoy at the Long-Path Midpoint

Tables Icon

Table 4 Geographical Coordinates of Platforms Used in the November 1996 Field Experiment at Zuniga Shoals

Tables Icon

Table 5 Error Estimates for the Analysisa

Tables Icon

Table 6 Statistics of the Analysisa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σ=τmτpF2τF2,
τm= Nλτmλ, Lrλdλ Nλrλdλ
βpλ=D1D2 aQextD, λ, ñdNdDdD.
QextD, λ, ñΔa.
aπ4 D2
τp=exp-βpλL.
βpλ=D1D2 QextD, λ, ñdAd ln Dd ln D.
τp2τpτp.
Mz=Nz+0.157z,
N=77.6 PTair.
dTdz  lnzz0,
n=1+C0pT.
dndz=-C0PT2dTdz.
F2=θrefractdθrefract/dzdθgeom/dzx,z=xt,zt,

Metrics