Abstract

A sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide in the lower troposphere was developed. The system uses a combination of a pair of KD*P crystals and a tunable dye laser with LDS 765 dye pumped by the second harmonic of a Nd:YAG laser to generate λon and λoff alternatively. Compared with the conventional system that uses Coumarin 445 dye pumped by the third harmonic, the output energy and long-term stability were improved. By use of this system, atmospheric NO2 concentrations of approximately 10–50 ppb were measured, with an instrumental error of approximately 7 ppb.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
    [CrossRef]
  2. T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
    [CrossRef]
  3. N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
    [CrossRef]
  4. R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
    [CrossRef]
  5. A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
    [CrossRef]
  6. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York1989) Chap. 16 and 17, pp. 378–428.
  7. W. Koechner, Solid-State Laser Engineering, 4th ed., Volume 1 of the Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1996), Chap. 10, pp. 562–582.
    [CrossRef]
  8. Catalog of KDP and Its Isomorphs (EKSMA Co., Vilnius, Lithuania, 2000). See http://www.eksma.lt .
  9. Catalog of Laser Dyes (Exciton, Inc., Dayton, Ohio, 2000). See http://www.exciton.com .

2001

1998

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

1995

R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
[CrossRef]

Cao, N.

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

Carleer, M.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Coln, R.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Coquart, B.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Fally, S.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Fujii, T.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

Fukuchi, T.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

Goto, N.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

Hermans, C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Jenouvrier, A.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed., Volume 1 of the Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1996), Chap. 10, pp. 562–582.
[CrossRef]

Merienne, M. F.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Nemoto, K.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

Simon, P. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Tai, H.

R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
[CrossRef]

Takeuchi, N.

T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “Dual differential absorption lidar for the measurement of atmospheric SO2 of the order of parts in 109,” Appl. Opt. 40, 949–956 (2001).
[CrossRef]

R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

Toriumi, R.

R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
[CrossRef]

Vandaele, A. C.

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York1989) Chap. 16 and 17, pp. 378–428.

Appl. Opt.

J. Quant. Spectrosc. Radiat. Transfer

A. C. Vandaele, C. Hermans, P. C. Simon, M. Carleer, R. Coln, S. Fally, M. F. Merienne, A. Jenouvrier, B. Coquart, “Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238–1000 nm) at 220 K and 294 K,” J. Quant. Spectrosc. Radiat. Transfer 59, 171–184 (1998).
[CrossRef]

Rev. Laser Eng.

R. Toriumi, H. Tai, N. Takeuchi, “Development of a lidar system for measurement of nitrogen dioxide using a tunable solid-state laser,” Rev. Laser Eng. 23, 29–35 (1995).
[CrossRef]

Other

T. Fukuchi, T. Fujii, N. Goto, K. Nemoto, N. Cao, N. Takeuchi, “Tropospheric profiling of SO2 and O3 by multiwavelength DIAL,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 296–304 (2000).
[CrossRef]

N. Cao, T. Fujii, T. Fukuchi, N. Goto, K. Nemoto, N. Takeuchi, “NO2 vertical concentration monitoring by DIAL with high accuracy,” in Lidar Remote Sensing for Industry and Environment Monitoring, U. N. Singh, T. Itabe, eds., Proc. SPIE4153, pp. 607–614 (2000).
[CrossRef]

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York1989) Chap. 16 and 17, pp. 378–428.

W. Koechner, Solid-State Laser Engineering, 4th ed., Volume 1 of the Springer Series in Optical Sciences, (Springer-Verlag, Berlin, 1996), Chap. 10, pp. 562–582.
[CrossRef]

Catalog of KDP and Its Isomorphs (EKSMA Co., Vilnius, Lithuania, 2000). See http://www.eksma.lt .

Catalog of Laser Dyes (Exciton, Inc., Dayton, Ohio, 2000). See http://www.exciton.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculation and experimental results of SFG output energy.

Fig. 2
Fig. 2

Calculation and experimental results of SFG conversion efficiency. The thin line shows the calculated wavelength dependence of the phase-matching angle, and the thick and dashed curves show the calculated wavelength dependence of the conversion efficiency when phase-matching angles were tuned to λon and λoff, respectively. Circles show the experimental conversion efficiency.

Fig. 3
Fig. 3

Block diagram of the SFG system. SHG, second-harmonic generation.

Fig. 4
Fig. 4

Laser energy trend of the SFG system and conventional Coumarin dye-laser system.

Fig. 5
Fig. 5

DIAL and NULL profiles of atmospheric NO2 concentration measured with the SFG system.

Fig. 6
Fig. 6

Correlations of the return signals for DIAL and NULL measurements.

Tables (3)

Tables Icon

Table 1 Parameters Used for Calculation of SFG Output

Tables Icon

Table 2 Combination of a Pair of Tuning Mirrors inside the Dye Oscillator Cavity and SFG Crystals

Tables Icon

Table 3 Comparison of Initial Laser Energy between the SFG System and the Conventional Coumarin Dye-Laser System

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n=1092ΔRσλon-σλoffNatm×lnVR+ΔR, λoffVR+ΔR, λon×VR, λonVR, λoff in ppb,
σλon>σλoff, λonλoff,
E3=ω3L0d22n1n2n3μ003/2E1E2πa2Δt,
1/λ1+1/λ2=1/λ3,
k1+k2=k3,
k1,3=2π/λ1,3cos2 θno2+sin2 θne21/2, k2=2πno/λ2.
η=sin2 Δkl/2Δkl/22,

Metrics