Abstract

Laser resonator configurations, which enable laser operation with two orthogonally polarized transverse modes, are presented. The intensity distributions of these two modes can be chosen to be complementary, so the gain medium can be exploited more efficiently than with a single mode, leading to improved output power. Moreover, the two modes can be combined and efficiently transformed into a single high-quality beam. Basic principles and experimental results with Nd:YAG lasers are presented.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
    [CrossRef]
  2. K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
    [CrossRef]
  3. A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
    [CrossRef]
  4. M. Rioux, P. A. Belanger, M. Cormier, “High-order circular-mode selection in a conical resonator,” Appl. Opt. 16, 1791–1792 (1977).
    [CrossRef] [PubMed]
  5. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
    [CrossRef]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 647.
  7. Note, due to the orthogonality of Laguerre–Gaussian modes, without the absolute value, zero would be obtained for any two different modes. The orthogonality, however, does not express the mode overlap.
  8. G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
    [CrossRef]
  9. M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
    [CrossRef]
  10. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [CrossRef]

2000 (3)

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
[CrossRef]

M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

1999 (1)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

1992 (1)

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

1980 (2)

A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
[CrossRef]

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

1977 (1)

Abramski, K. M.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

Baker, H. J.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

Balmer, J. E.

M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
[CrossRef]

Belanger, P. A.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Colley, A. D.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

Cormier, M.

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

Giuliani, G.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Graf, T.

M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
[CrossRef]

Hall, D. R.

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

Kol’chenko, A. P.

A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
[CrossRef]

Nikitenko, A. G.

A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

R. Oron, N. Davidson, A. A. Friesem, E. Hasman, “Continuous phase elements can improve laser beam quality,” Opt. Lett. 25, 939–941 (2000).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

Rioux, M.

Ristori, P.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 647.

Trobs, M.

M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
[CrossRef]

Troitskii, Y. K.

A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, E. Hasman, “Discontinuous phase elements for transverse mode selection in laser resonators,” Appl. Phys. Lett. 74, 1373–1375 (1999).
[CrossRef]

K. M. Abramski, H. J. Baker, A. D. Colley, D. R. Hall, “Single-mode selection using coherent imaging within a slab wave-guide CO2-laser,” Appl. Phys. Lett. 60, 2469–2471 (1992).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Opt. Commun. (2)

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

M. Trobs, J. E. Balmer, T. Graf, “Efficient polarised output from a unidirectional multi-rod Nd:YVO4 ring resonator,” Opt. Commun. 182, 437–442 (2000).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

A. P. Kol’chenko, A. G. Nikitenko, Y. K. Troitskii, “Control of the structure of transverse laser modes by phase shifting masks,” Sov. J. Quantum Electron. 10, 1013–1016 (1980).
[CrossRef]

Other (2)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 647.

Note, due to the orthogonality of Laguerre–Gaussian modes, without the absolute value, zero would be obtained for any two different modes. The orthogonality, however, does not express the mode overlap.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic resonator configuration for laser operation with two orthogonally polarized transverse modes and an external beam combiner. The modes are selected by intracavity discontinuous phase elements (DPEs) and combined after rotation with a prism. Note that the DPEs shown here are for selecting the TEM01(x) and TEM01(y) modes.

Fig. 2
Fig. 2

Experimental near-field intensity distributions that emerge from a Nd:YAG laser in which two DPEs were incorporated to obtain two orthogonally polarized TEM01 modes. (a) Vertically polarized TEM01(x) mode; (b) horizontally polarized TEM01(y) mode.

Fig. 3
Fig. 3

Experimental intensity distribution and cross sections of the combined beam. (a) Intensity distribution; (b) x cross section; (c) y cross section.

Fig. 4
Fig. 4

Experimental near-field intensity distributions that emerge from a Nd:YAG laser in which a DPEs was incorporated in one path to obtain the TEM02 mode, and an aperture was inserted in the second path, to obtain the fundamental Gaussian TEM00 mode. (a) TEM02 mode; (b) TEM00 mode.

Tables (1)

Tables Icon

Table 1 Mode Overlap Values for Various Laguerre-Gaussian Modes, According to Eq. (2)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eplr, θ=2p!πp+l!1+δ0l1/2ρl/2Lplρ×exp-ρ/2coslθ,
Mode Overlap Value= |Ep1l1r, θEp2l2r, θ|rdrdθ.

Metrics