Abstract

Damage growth in optical materials used in large-aperture laser systems is an issue of great importance to determine component lifetime and therefore cost of operation. Small size damage sites tend to grow when exposed to subsequent high-power laser irradiation at 355 nm. An understanding of the photophysical processes associated with damage growth is important to devise mitigation techniques. We examine the role of laser-modified material and cracks formed in the crater of damage pits in the damage growth process using fused-silica and deuterated KDP samples. Experimental results indicate that both of the above-mentioned features can initiate plasma formation at fluences as low as 2 J/cm2. The intensity of the recorded plasma emission remains low for fluences up to approximately 5 J/cm2 but rapidly increases thereafter, accompanied by an increase of the size of the damage crater.

© 2002 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription