Abstract

We have developed waveguides for the mid-IR spectrum using silver halide crystals. Diffused planar waveguides constructed from silver chlorobromide (AgClBr) with different diffusion thicknesses were designed and characterized. The waveguides were based on our changing the refractive index of the guiding layer by a diffusion of Br- ions into crystalline AgCl substrates. The waveguides were analyzed and investigated with a 10.6-µm CO2 laser, and the optically measured thicknesses of the waveguides were found to vary between 65 and 600 µm. The propagation losses were in the range of 4–16 dB/cm, and the maximal entrance angle was 62°. The output beam distribution was measured and was in good correlation with a numerical analysis simulation based on a ray-tracing model, by use of the eikonal equation.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, England, 1977), Chap. 3, pp. 267–287.
  2. R. G. Hunsperger, Integrated Optics Theory and Technology, 4th ed. (Springer, Berlin, 1995), Chap. 4, pp. 48–57.
  3. T. Findakly, “Glass waveguides by ion exchange: a review,” Opt. Eng. 24, 244–250 (1985).
    [CrossRef]
  4. F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
    [CrossRef]
  5. S. E. Plunkett, S. Propst, M. S. Braiman, “Supported planar germanium waveguides for infrared evanescent-wave sensing,” Appl. Opt. 36, 4055–4061 (1997).
    [CrossRef] [PubMed]
  6. W. S. C. Chang, K. W. Loh, “Experimental observation of 10.6 µm guided wave in Ge thin film,” Appl. Opt. 10, 2361–2362 (1971).
    [CrossRef] [PubMed]
  7. M. S. Chang, W. S. C. Chang, B. L. Sopori, H. R. Vann, M. W. Muller, M. G. Craford, D. Finn, W. O. Groves, H. Herzog, “GaAs optical waveguide structures at 10.6-µm wavelength,” Appl. Opt. 14, 1572–1578 (1975).
    [CrossRef] [PubMed]
  8. A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
    [CrossRef]
  9. J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
    [CrossRef]
  10. P. K. Cheo, J. M. Berak, W. Oshinsky, J. L. Swindal, “Optical waveguide structure for CO2 lasers,” Appl. Opt. 12, 500–509 (1973).
    [CrossRef] [PubMed]
  11. F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
    [CrossRef]
  12. J. A. Harrington, “Infrared alkali halide fibers,” Appl. Opt. 27, 3097–3101 (1988).
    [CrossRef] [PubMed]
  13. P. W. France, Fluoride Glass Optical Fibers (Blackie, Glasgow, 1990), Chap. 1, pp. 16–25.
  14. J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998), Chap. 9, pp. 325–335.
  15. D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
    [CrossRef] [PubMed]
  16. J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, Oxford, England, 1975), Chap. 3, pp. 28–39.
  17. L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
    [CrossRef]
  18. A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
    [CrossRef]
  19. D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
    [CrossRef]
  20. J. M. Mir, J. A. Agostinelli, “Optical thin films for waveguide applications,” J. Vac. Sci. Technol. A 12, 1439–1445 (1994).
    [CrossRef]
  21. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, Boston, 1991), Chap. 1, pp. 31–43.
  22. A. L. Laskar, “Defect properties and diffusion in silver halides,” Philos. Mag. A 64, 1043–1057 (1991).
    [CrossRef]
  23. A. P. Batra, L. M. Slifkin, “Impurity ions and vacancies in silver halide crystals,” Photograph. Sci. Eng. 17, 64–68 (1973).
  24. D. W. Hewak, J. W. Y. Lit, “Numerical ray-tracing method for gradient index media,” Can. J. Phys. 63, 234–239 (1985).
    [CrossRef]

1997

1996

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

1994

J. M. Mir, J. A. Agostinelli, “Optical thin films for waveguide applications,” J. Vac. Sci. Technol. A 12, 1439–1445 (1994).
[CrossRef]

1993

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

1991

A. L. Laskar, “Defect properties and diffusion in silver halides,” Philos. Mag. A 64, 1043–1057 (1991).
[CrossRef]

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

1988

1985

T. Findakly, “Glass waveguides by ion exchange: a review,” Opt. Eng. 24, 244–250 (1985).
[CrossRef]

D. W. Hewak, J. W. Y. Lit, “Numerical ray-tracing method for gradient index media,” Can. J. Phys. 63, 234–239 (1985).
[CrossRef]

1980

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

1976

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

1975

1973

P. K. Cheo, J. M. Berak, W. Oshinsky, J. L. Swindal, “Optical waveguide structure for CO2 lasers,” Appl. Opt. 12, 500–509 (1973).
[CrossRef] [PubMed]

A. P. Batra, L. M. Slifkin, “Impurity ions and vacancies in silver halide crystals,” Photograph. Sci. Eng. 17, 64–68 (1973).

1972

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

1971

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998), Chap. 9, pp. 325–335.

Agostinelli, J. A.

J. M. Mir, J. A. Agostinelli, “Optical thin films for waveguide applications,” J. Vac. Sci. Technol. A 12, 1439–1445 (1994).
[CrossRef]

Batra, A. P.

A. P. Batra, L. M. Slifkin, “Impurity ions and vacancies in silver halide crystals,” Photograph. Sci. Eng. 17, 64–68 (1973).

Berak, J. M.

Bessonov, A. F.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Braiman, M. S.

Bunimovich, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

Chang, M. S.

Chang, T. Y.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

Chang, W. S. C.

Cheo, P. K.

Craford, M. G.

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, Oxford, England, 1975), Chap. 3, pp. 28–39.

DeRowe, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Deryugin, L. N.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Eyal, O.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Findakly, T.

T. Findakly, “Glass waveguides by ion exchange: a review,” Opt. Eng. 24, 244–250 (1985).
[CrossRef]

Finn, D.

France, P. W.

P. W. France, Fluoride Glass Optical Fibers (Blackie, Glasgow, 1990), Chap. 1, pp. 16–25.

German, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Gotshal, Y.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Groves, W. O.

Gudzenko, A. I.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Harrington, J. A.

Herzog, H.

Hewak, D. W.

D. W. Hewak, J. W. Y. Lit, “Numerical ray-tracing method for gradient index media,” Can. J. Phys. 63, 234–239 (1985).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics Theory and Technology, 4th ed. (Springer, Berlin, 1995), Chap. 4, pp. 48–57.

Julien, F. H.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

Katzir, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

D. Bunimovich, A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32, 2045–2048 (1993).
[CrossRef] [PubMed]

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

A. Sa’ar, A. Katzir, “Scattering effects in crystalline infrared fibers,” J. Opt. Soc. Am. A 5, 823–833 (1988).
[CrossRef]

Komotskii, V. A.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Kristianpoller, N.

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

Laskar, A. L.

A. L. Laskar, “Defect properties and diffusion in silver halides,” Philos. Mag. A 64, 1043–1057 (1991).
[CrossRef]

Levite, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Lit, J. W. Y.

D. W. Hewak, J. W. Y. Lit, “Numerical ray-tracing method for gradient index media,” Can. J. Phys. 63, 234–239 (1985).
[CrossRef]

Loh, K. W.

Lourtioz, J. M.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, Boston, 1991), Chap. 1, pp. 31–43.

McFee, J. H.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

McGee, J. D.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

Mills, D. L.

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

Mir, J. M.

J. M. Mir, J. A. Agostinelli, “Optical thin films for waveguide applications,” J. Vac. Sci. Technol. A 12, 1439–1445 (1994).
[CrossRef]

Moser, F.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Muller, M. W.

Nagli, L.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

Nguyen, V. T.

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

Oshinsky, W.

Plunkett, S. E.

Pogosov, G. A.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Propst, S.

Ravid, A.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Sa’ar, A.

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998), Chap. 9, pp. 325–335.

Scharf, V.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shalem, S.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shemesh, D.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Shmilevich, A.

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

Simchi, R.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Slifkin, L. M.

A. P. Batra, L. M. Slifkin, “Impurity ions and vacancies in silver halide crystals,” Photograph. Sci. Eng. 17, 64–68 (1973).

Sopori, B. L.

Sotin, V. E.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Swindal, J. L.

Terichev, V. F.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Unger, H. G.

H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, England, 1977), Chap. 3, pp. 267–287.

Vagos, P.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

Vann, H. R.

Vasserman, I.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

Yang, D. D.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, “Novel all-optical 10µm waveguide modulator based on intersubband absorption in GaAs/A1GaAs quantum wells,” Appl. Phys. Lett. 59, 2645–2647 (1991).
[CrossRef]

J. H. McFee, J. D. McGee, T. Y. Chang, V. T. Nguyen, “Guided wave propagation at 10.6 µm in silver bromide thin films,” Appl. Phys. Lett. 21, 534–536 (1972).
[CrossRef]

Can. J. Phys.

D. W. Hewak, J. W. Y. Lit, “Numerical ray-tracing method for gradient index media,” Can. J. Phys. 63, 234–239 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Moser, D. Bunimovich, A. DeRowe, O. Eyal, A. German, Y. Gotshal, A. Levite, L. Nagli, A. Ravid, V. Scharf, S. Shalem, D. Shemesh, R. Simchi, I. Vasserman, A. Katzir, “Medical applications of infrared transmitting silver halide fibers,” IEEE J. Sel. Top. Quantum Electron. 2, 872–879 (1996).
[CrossRef]

J. Appl. Phys.

L. Nagli, D. Bunimovich, A. Shmilevich, N. Kristianpoller, A. Katzir, “Optical properties of mixed silver halide crystals and fibers,” J. Appl. Phys. 74, 5737–5741 (1993).
[CrossRef]

D. L. Mills, “Light scattering by point defects in insulating crystals,” J. Appl. Phys. 51, 5864–5867 (1980).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. A

J. M. Mir, J. A. Agostinelli, “Optical thin films for waveguide applications,” J. Vac. Sci. Technol. A 12, 1439–1445 (1994).
[CrossRef]

Opt. Eng.

T. Findakly, “Glass waveguides by ion exchange: a review,” Opt. Eng. 24, 244–250 (1985).
[CrossRef]

Philos. Mag. A

A. L. Laskar, “Defect properties and diffusion in silver halides,” Philos. Mag. A 64, 1043–1057 (1991).
[CrossRef]

Photograph. Sci. Eng.

A. P. Batra, L. M. Slifkin, “Impurity ions and vacancies in silver halide crystals,” Photograph. Sci. Eng. 17, 64–68 (1973).

Sov. J. Quantum Electron.

A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, V. F. Terichev, “Thin film chalcogenide glass waveguide for medium infrared range,” Sov. J. Quantum Electron. 6, 1248–1249 (1976).
[CrossRef]

Other

H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, England, 1977), Chap. 3, pp. 267–287.

R. G. Hunsperger, Integrated Optics Theory and Technology, 4th ed. (Springer, Berlin, 1995), Chap. 4, pp. 48–57.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, Oxford, England, 1975), Chap. 3, pp. 28–39.

P. W. France, Fluoride Glass Optical Fibers (Blackie, Glasgow, 1990), Chap. 1, pp. 16–25.

J. S. Sanghera, I. D. Aggarwal, Infrared Fiber Optics (CRC Press, Boca Raton, Fla., 1998), Chap. 9, pp. 325–335.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, Boston, 1991), Chap. 1, pp. 31–43.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Best-fit results for the index of refraction of the waveguides.

Fig. 2
Fig. 2

Characterization waveguide system—side view.

Fig. 3
Fig. 3

Location of points on the output end of the waveguide located at a distance d from the upper surface, where the maximum signal is obtained. These are plotted for various positions y of the input beam, for waveguide #1.

Fig. 4
Fig. 4

Relative signal from the IR detector versus distance along waveguide #1.

Fig. 5
Fig. 5

Maximal entrance angle to the waveguide.

Fig. 6
Fig. 6

Normalized intensity for the cross section of the output profile of waveguide #1, simulation and experimental data.

Fig. 7
Fig. 7

Three-dimensional simulation illustrating the output profile intensity from waveguide #1.

Fig. 8
Fig. 8

Geometrical ray tracing in the diffused waveguide.

Tables (1)

Tables Icon

Table 1 Measured Parameters of Five Diffused Waveguides

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ny=ns+ni-ns erf y/dr.
ddsnydr¯ds=n.
ny=A+BerfCy.
ddsnydxds=0.
xz=x0+tgθcosψz,
ddsnydyds=2BCπ1-Cy2,
nydyds=T.
dydz=1ny T, dTdz=2BCπ1-Cy2.
yz=0=y0, Tz=0=n dydzz=0=ntgθsinψ.

Metrics