Abstract

We demonstrate tunable diode laser absorption spectroscopy of CO2 and NH3 near 1.5 µm using a distributed feedback diode laser in conjunction with hollow optical waveguides as long-path sample cells. The waveguides are coiled to reduce the physical extent of the system. The small volume of the waveguide provides rapid instrument response to changes in gas concentration. To reduce the pressure drop associated with long lengths and high flow rates, we perforate the waveguides in a novel geometry providing parallel pneumatic paths while maintaining optical path length. A minimum detectable absorbance of 3.5 × 10-5 in a 3-m section of waveguide is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.
  2. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981).
    [CrossRef]
  3. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  4. D. R. Herriott, H. Kogelnik, R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964).
    [CrossRef]
  5. J. H. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  6. Monitor Labs, ML9830 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).
  7. Monitor Labs, ML9820 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).
  8. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
    [CrossRef] [PubMed]
  9. Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer-laser light,” Opt. Lett. 23, 1226–1228 (1998).
    [CrossRef]
  10. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE Proc.2396, 4–14 (1995).
    [CrossRef]
  11. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
    [CrossRef] [PubMed]
  12. J. Clarkin, Polymicro Technologies, 18019 N. 25th Ave., Phoenix, Ariz. 85023–1200 (personal communication, 2000).
  13. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  14. M. Miyagi, “Bending losses in hollow and dielectric tube leaky waveguides,” Appl. Opt. 29, 367–370 (1990).
    [CrossRef] [PubMed]
  15. S. Sato, M. Saito, M. Miyagi, “Infrared hollow waveguides for capillary flow cells,” Appl. Spectrosc. 47, 1665–1669 (1993).
    [CrossRef]
  16. C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992).
    [CrossRef]
  17. R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 50, 415–417 (1996).
    [CrossRef]
  18. D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
    [CrossRef]
  19. L. Hvozdara, S. Gianordoli, G. Strasser, W. Schrenk, K. Unterrainer, E. Gornik, C. S. S. S. Murthy, V. Pustogow, B. Mizaikoff, A. Inberg, N. Croitoru, “Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers,” Appl. Opt. 39, 6926–6930 (2000).
    [CrossRef]
  20. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt. 31, 3409–3415 (1992).
    [CrossRef] [PubMed]
  21. R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]
  22. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  23. L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
    [CrossRef]
  24. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 µm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [CrossRef]

2001 (1)

2000 (1)

1998 (3)

Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer-laser light,” Opt. Lett. 23, 1226–1228 (1998).
[CrossRef]

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

1994 (1)

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
[CrossRef] [PubMed]

1993 (2)

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

S. Sato, M. Saito, M. Miyagi, “Infrared hollow waveguides for capillary flow cells,” Appl. Spectrosc. 47, 1665–1669 (1993).
[CrossRef]

1992 (2)

1990 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981).
[CrossRef]

1964 (1)

1942 (1)

Abel, T.

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
[CrossRef] [PubMed]

Adatia, N. A.

C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992).
[CrossRef]

Adler-Golden, S.

Baer, D. S.

Bechara, J.

For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Bien, F.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Clarkin, J.

J. Clarkin, Polymicro Technologies, 18019 N. 25th Ave., Phoenix, Ariz. 85023–1200 (personal communication, 2000).

Croitoru, N.

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gianordoli, S.

Gibson, D. J.

D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
[CrossRef]

Giles, I. P.

C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Goldstein, N.

Gornik, E.

Haan, D. J.

D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
[CrossRef]

Hanson, R. K.

Harrington, J. A.

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

R. L. Kozodoy, R. H. Micheels, J. A. Harrington, “Small-bore hollow waveguide infrared absorption cells for gas sensing,” Appl. Spectrosc. 50, 415–417 (1996).
[CrossRef]

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
[CrossRef] [PubMed]

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
[CrossRef] [PubMed]

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE Proc.2396, 4–14 (1995).
[CrossRef]

D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
[CrossRef]

Hegelund, F.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Herriott, D. R.

Hirsch, J.

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

Inberg, A.

Juck, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Kozodoy, R. L.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981).
[CrossRef]

Lee, J.

Lundsberg-Nielsen, L.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Mackay, G. I.

For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Mandin, Y. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Matsuura, Y.

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Micheels, R. H.

Mihalcea, R. M.

Miyagi, M.

Mizaikoff, B.

Murthy, C. S. S. S.

Nemtchechin, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nicolaisen, F. M.

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

Nubling, R. K.

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Pustogow, V.

Rabii, C. D.

D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Saito, M.

Sato, S.

Schiff, H. I.

For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

Schrenk, W.

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Strasser, G.

Unterrainer, K.

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wattsin, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Webber, M. E.

White, J. H.

Worrell, C. A.

C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B. (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B. 26, 203–210 (1981).
[CrossRef]

Appl. Spectrosc. (2)

Electron, Lett. (1)

C. A. Worrell, I. P. Giles, N. A. Adatia, “Remote gas sensing with mid-infra-red hollow waveguide,” Electron, Lett. 28, 615–617 (1992).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Mol. Spectrosc. (1)

L. Lundsberg-Nielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (14NH3) in the near-infrared region, 6400–6900 cm-1,” J. Mol. Spectrosc. 162, 230–245 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, Y. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattsin, K. Yoshino, K. V. Chance, K. W. Juck, L. R. Brown, V. Nemtchechin, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation) 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Opt Lett. (1)

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt Lett. 19, 1034–1037 (1994).
[CrossRef] [PubMed]

Opt. Eng. (1)

R. K. Nubling, J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Opt. Lett. (1)

Other (6)

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., SPIE Proc.2396, 4–14 (1995).
[CrossRef]

J. Clarkin, Polymicro Technologies, 18019 N. 25th Ave., Phoenix, Ariz. 85023–1200 (personal communication, 2000).

Monitor Labs, ML9830 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).

Monitor Labs, ML9820 data sheet (Monitor Labs Inc., Englewood, Colo., (1995).

For use of TDLAS for atmospheric measurements, see H. I. Schiff, G. I. Mackay, J. Bechara, “The use of TDLAS for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, Vol. 127 of Chemical Analysis Series, M. W. Sigrist, ed. (Wiley, New York, 1994), pp. 239–333.

D. J. Haan, D. J. Gibson, C. D. Rabii, J. A. Harrington, “Coiled hollow waveguides for gas sensing,” in Surgical Assist Systems, M. Bogner, S. T. Charles, W. S. Grundfest, J. A. Harrington, A. Katzir, L. S. Lome, M. W. Vannier, R. Von Hanwehr, eds., Proc. SPIE3262, 125–129 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System schematic block diagram. The arrows indicate the direction of gas flow in the pneumatic system.

Fig. 2
Fig. 2

Shown are a set of diagrams and images that describe the assembly of the perforated hollow waveguide for use as an optical guide and gas sample cell. (a) A conceptual line drawing of the perforated hollow waveguide. Note that this drawing is not to scale. In reality the waveguide diameter is much smaller relative to the radius of curvature of the coils. (b) This image shows the waveguide mount, the coiled waveguides, and the gas inlet chamber. The gas exhaust chamber is identical. (c) This image shows the interior of the gas inlet chamber. The inset shows photographs of the laser-drilled holes in several coils of waveguide mounted in the gas inlet chamber.

Fig. 3
Fig. 3

CO2 spectra. The gas concentration was 100% CO2, the sample pressure 670 Torr, and the temperature 20 °C. (a) Second-harmonic spectrum (S2) captured with the hollow waveguide system in comparison with a spectrum calculated with HITRAN data. The computed spectrum was shifted up by one unit to allow a comparison. (b) Line strength and location data as predicted by the HITRAN model.

Fig. 4
Fig. 4

NH3 spectra. The gas concentration was 0.36% NH3 balance N2, the sample pressure was 670 Torr, and the temperature was 20 °C. (a) Second-harmonic spectrum captured with the hollow waveguide system. (b) Line strength and location data as predicted in Ref. 23.

Fig. 5
Fig. 5

Calibrated CO2 response of the hollow waveguide gas analyzer. The sample pressure was 672 Torr and the temperature 24 °C. The values of the means (circles) and the standard deviations (error bars) are printed next to the data points outside of and within parentheses, respectively. The inset graph represents the magnitude of the absolute error of the measurements provided by the system in comparison with the delivered concentration.

Fig. 6
Fig. 6

Data obtained through sequential changes of gas mixtures. In this experiment, the gas mixture was alternated between N2 and a mixture of N2 and CO2 that corresponded to a 1% by volume CO2 concentration. The gas pressure was 672 Torr and the temperature 24 °C.

Fig. 7
Fig. 7

This plot illustrates the drift of the sensor operating in the line-locked mode for several hours. The room-temperature change was approximately 10 °C during the extent of this data collection. The sample pressure was approximately 670 Torr.

Fig. 8
Fig. 8

Measurements used to assess the sensor SNR. In this case, the temperature was 25 °C and the sample pressure was approximately 670 Torr.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔI=I0 exp-βLαLc.
ΔI=ΔI exp12β-βL,

Metrics