Abstract

Rendina et al. recently proposed the original configuration of an electromagnetic power sensor for microwaves and millimeter waves that is based on an optically interrogated all-silicon chip [Electron. Lett. 35, 1748 (1999)]. Here we theoretically analyze and discuss in detail the performances of such a new class of nonperturbing and wideband probe in terms of sensitivity, resolution, intrinsic detectivity, linearity, and response time. Good agreement between theory and experiments is demonstrated. In particular, minimum resolutions of ∼1 mW/cm2 are obtained at frequencies beyond 10 GHz. The dependence of response on the geometrical and electromagnetic parameters of the sensing element is analyzed, and on this basis the possibility of achieving optimized configurations is discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kanda, L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
    [CrossRef]
  2. T. Matsui, I. Yokoshima, “Characteristic of a FET electric field sensor,” in National Conference Record 2692 (Institute of Electronics, Information and Communication Engineers, Japan, 1986).
  3. L. Brunetti, “Thin-film bolometer for high-frequency metrology,” Sensors Actuators A 32, 423–427 (1992).
    [CrossRef]
  4. M. Tokuda, N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).
  5. D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
    [CrossRef]
  6. T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
    [CrossRef]
  7. R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.
  8. R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.
  9. J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
    [CrossRef]
  10. T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.
  11. T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
    [CrossRef]
  12. I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
    [CrossRef]
  13. G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
    [CrossRef]
  14. F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
    [CrossRef]
  15. D. S. Jones, The Theory of Electromagnetism (Pergamon, London, 1964), 528–532.
  16. Ansys Release 5.5 engineering simulation software, ANSYS, Inc.Canonsburg, Pa.
  17. Properties of Silicon, Vol. 4 of EMIS Data Reviews Series (Institute of Electrical Engineers, London, 1998), pp. 3–6 and 35–39.
  18. M. Iodice, “Analisi, progetto e realizzazione di nuovi modulatori in silicio per applicazioni optoelettroniche,” Ph.D. dissertation (University of Naples “Federico II,” Naples, Italy, 1998).
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).
  20. J. B. Kumer, T. C. James, “Effect of substrate absorption on the performance of solid Fabry–Perot etalons,” Appl. Opt. 27, 4800–4801 (1988).
    [CrossRef] [PubMed]
  21. G. Hernandez, “Fabry-Perot with an absorbing etalon cavity,” Appl. Opt. 24, 3062–3067, (1985).
    [CrossRef] [PubMed]
  22. G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
    [CrossRef]
  23. S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).
  24. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
    [CrossRef]
  25. G. Cocorullo, I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
    [CrossRef]
  26. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  27. R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
    [CrossRef]
  28. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Tokyo, 1988).
    [CrossRef]
  29. A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989).
    [CrossRef]
  30. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, 2000).
  31. A. Van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, 1986).
  32. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1981).
  33. G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
    [CrossRef]

2000

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

1999

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

1998

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

1997

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

1995

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

1994

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

1992

L. Brunetti, “Thin-film bolometer for high-frequency metrology,” Sensors Actuators A 32, 423–427 (1992).
[CrossRef]

M. Tokuda, N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).

G. Cocorullo, I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
[CrossRef]

1991

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
[CrossRef] [PubMed]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
[CrossRef]

1989

A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989).
[CrossRef]

1988

1987

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[CrossRef]

M. Kanda, L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
[CrossRef]

1985

Alder, T.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

Bennett, B. R.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

Boyd, J. T.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Brunetti, L.

L. Brunetti, “Thin-film bolometer for high-frequency metrology,” Sensors Actuators A 32, 423–427 (1992).
[CrossRef]

Claus, R. O.

Cocorullo, G.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

G. Cocorullo, I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

Crosignani, B.

S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).

Cutolo, A.

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

Dändliker, R.

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Della Corte, F. G.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

Di Porto, P.

S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).

Driver, L. D.

M. Kanda, L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
[CrossRef]

Giazotto, A.

A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989).
[CrossRef]

Gross, M.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

Gunther, M. F.

Heinzelmann, R.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.

Hernandez, G.

Hug, K.

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Iodice, M.

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

M. Iodice, “Analisi, progetto e realizzazione di nuovi modulatori in silicio per applicazioni optoelettroniche,” Ph.D. dissertation (University of Naples “Federico II,” Naples, Italy, 1998).

Ishibashi, T.

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Jackson, H. E.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Jager, D.

R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

James, T. C.

Jones, D. S.

D. S. Jones, The Theory of Electromagnetism (Pergamon, London, 1964), 528–532.

Kalinowski, D.

R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

Kanda, M.

J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
[CrossRef]

M. Kanda, L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
[CrossRef]

Kato, K.

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

Kimura, S.

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

Kingsley, S. A.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Kostrzewa, C.

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

Kumer, J. B.

Kuwabara, N.

M. Tokuda, N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).

Latess, J.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, 2000).

Massa, R.

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

Matsui, T.

T. Matsui, I. Yokoshima, “Characteristic of a FET electric field sensor,” in National Conference Record 2692 (Institute of Electronics, Information and Communication Engineers, Japan, 1986).

Meier, T.

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

Montefusco, M. E.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

Moretti, L.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

Murphy, K. A.

Nagatsuma, T.

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Naghski, D. H.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Orr, R. D.

J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
[CrossRef]

Otsuji, T.

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

Panariello, G.

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

Petermann, K.

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Tokyo, 1988).
[CrossRef]

Politch, J.

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Randa, J.

J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
[CrossRef]

Rendina, I.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

G. Cocorullo, I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
[CrossRef]

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

Sahri, N.

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1981).

Sarro, P. M.

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

Sato, K.

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Schmidt, M.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

Schuppert, B.

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

Shimizu, N.

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Solimeno, S.

S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).

Soref, R. A.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[CrossRef]

Sriram, S.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

Stohr, A.

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1981).

Tokuda, M.

M. Tokuda, N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).

Van der Ziel, A.

A. Van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, 1986).

Vengsarkar, A. M.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

Yaita, M.

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

Yokoshima, I.

T. Matsui, I. Yokoshima, “Characteristic of a FET electric field sensor,” in National Conference Record 2692 (Institute of Electronics, Information and Communication Engineers, Japan, 1986).

Zimmermann, E.

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Appl. Opt.

Electron. Lett.

G. Cocorullo, I. Rendina, “Thermo-optical modulation at 1.5 µm in silicon etalon,” Electron. Lett. 28, 83–84 (1992).
[CrossRef]

I. Rendina, F. G. Della Corte, M. Iodice, R. Massa, G. Panariello, G. Cocorullo, “All-silicon optically-interrogated power sensor for microwaves and millimetre waves,” Electron. Lett. 35, 1748–1749 (1999).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. QE-23, 123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Cocorullo, M. Iodice, I. Rendina, P. M. Sarro, “Silicon thermooptical micromodulator with 700-kHz–3-dB bandwidth,” IEEE Photon. Technol. Lett. 7, 363–365 (1995).
[CrossRef]

IEEE Trans. Electromagn. Compat.

J. Randa, M. Kanda, R. D. Orr, “Thermo-optic designs for electromagnetic field probes for microwave and millimeter-wave,” IEEE Trans. Electromagn. Compat. 33, 205–214 (1991).
[CrossRef]

IEEE Trans. Electron. Devices

G. Cocorullo, F. G. Della Corte, M. Iodice, I. Rendina, P. M. Sarro, “A temperature all-silicon micro-sensor based on the thermo-optic effect,” IEEE Trans. Electron. Devices 44, 766–774 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Kanda, L. D. Driver, “An isotropic electric-field probe with tapered resistive dipoles for broad-band use,” IEEE Trans. Microwave Theory Tech. MTT-35, 124–130 (1987).
[CrossRef]

T. Otsuji, K. Kato, S. Kimura, T. Nagatsuma, “Wide-band high-efficiency optical-to-electrical conversion stimulus probe heads for testing large-signal responses of high-speed electronic devices,” IEEE Trans. Microwave Theory Tech. 47, 525–533 (1999).
[CrossRef]

IEICE Trans. Fundam. Electron. Commun. Comput. Sci.

M. Tokuda, N. Kuwabara, “Recent progress in fiber optic antennas for EMC measurement,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75B, 107–113 (1992).

International Topical Meeting on Microwave Photonics

T. Nagatsuma, N. Sahri, M. Yaita, T. Ishibashi, N. Shimizu, K. Sato, “All optoelectronic generation and detection of millimeter-wave signals,” in International Topical Meeting on Microwave Photonics (1998), pp. 5–8.

J. Appl. Phys.

F. G. Della Corte, M. E. Montefusco, L. Moretti, I. Rendina, G. Cocorullo, “Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models,” J. Appl. Phys. 88, 7115–7119 (2000).
[CrossRef]

J. Lightwave Technol.

D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, J. Latess, “An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields,” J. Lightwave Technol. 12, 1092–1097 (1994).
[CrossRef]

T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Integrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technol. 12, 1497–1503 (1994).
[CrossRef]

Opt. Commun.

G. Cocorullo, F. G. Della Corte, I. Rendina, A. Cutolo, “New possibilities for efficient silicon integrated electro-optical modulators,” Opt. Commun. 86, 228–235 (1991).
[CrossRef]

Opt. Eng.

R. Dändliker, K. Hug, J. Politch, E. Zimmermann, “High accuracy distance measurements with multiple-wavelength interferometry,” Opt. Eng. 34, 2407–2412 (1995).
[CrossRef]

Opt. Lett.

Phys. Rep.

A. Giazotto, “Interferometric detection of gravitational waves,” Phys. Rep. 182, 365–424 (1989).
[CrossRef]

Sensors Actuators A

L. Brunetti, “Thin-film bolometer for high-frequency metrology,” Sensors Actuators A 32, 423–427 (1992).
[CrossRef]

Other

S. Solimeno, B. Crosignani, P. Di Porto, Guiding, Diffraction and Confinement of Optical Radiation (Academic, Orlando, Fla., 1986).

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford U. Press, Oxford, 2000).

A. Van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, 1986).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1981).

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Tokyo, 1988).
[CrossRef]

R. Heinzelmann, A. Stohr, M. Gross, D. Kalinowski, T. Alder, M. Schmidt, D. Jager, “Optically powered remote optical field sensor system using an electroabsorption-modulator,” presented at the IEEE MTT-S International Microwave Symposium, Baltimore, Md., 7–12 June 1998.

R. Heinzelmann, A. Stohr, D. Kalinowski, D. Jager, “Miniaturized fiber-coupled RF E-field sensor with high sensitivity,” in Proceedings of the Laser and Electro-Optics Society (LEOS) 2000 Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 2000), pp. 525–526.

T. Matsui, I. Yokoshima, “Characteristic of a FET electric field sensor,” in National Conference Record 2692 (Institute of Electronics, Information and Communication Engineers, Japan, 1986).

D. S. Jones, The Theory of Electromagnetism (Pergamon, London, 1964), 528–532.

Ansys Release 5.5 engineering simulation software, ANSYS, Inc.Canonsburg, Pa.

Properties of Silicon, Vol. 4 of EMIS Data Reviews Series (Institute of Electrical Engineers, London, 1998), pp. 3–6 and 35–39.

M. Iodice, “Analisi, progetto e realizzazione di nuovi modulatori in silicio per applicazioni optoelettroniche,” Ph.D. dissertation (University of Naples “Federico II,” Naples, Italy, 1998).

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the sensing element with the connected optical fiber needed for remote interrogation. The best performance is obtained when incident electric field E is parallel to the longest dimension a of the sensing element.

Fig. 2
Fig. 2

Block diagram schematizing the sequence of analysis steps used to model the sensor operation.

Fig. 3
Fig. 3

Interferometric fringe patterns in a silicon Fabry-Perot etalon. The reflected light intensity is plotted as a function of the cavity phase for nonabsorbing (solid curve) and absorbing (dashed curve) material with α = 1.2 × 10-2 cm-1.

Fig. 4
Fig. 4

Normalized outputs of two cubic doped-silicon etalons (σ = 21.5 S/m) of different dimensions. Dashed and solid curves, 10- and 50-µm cavity dimensions, respectively. The outputs are calculated as a function of incident E-field intensity at frequency f = 1 GHz.

Fig. 5
Fig. 5

Normalized output of a silicon Fabry-Perot etalon sensor in the phase range 0–π/2 (solid curve) and its linear approximation in the range of maximum slope (dashed curve).

Fig. 6
Fig. 6

Schematic of the sensing system: LD, laser diode; PD, photodiode; S, splitter. The position of the sensing element inside the microwave (MW) rectangular waveguide during the sensor’ characterization measurements is also shown.

Fig. 7
Fig. 7

Microwave circuit experimental setup: G, generator; AMP, amplificator; I, isolator; DC, directional coupler; WG, waveguide; ML, matched load; P i, Pr, power meters for incident and reflected microwaves, respectively.

Fig. 8
Fig. 8

Experimental output fringe patterns versus incident E-field intensity at several frequencies in the range 2.5–18 GHz.

Fig. 9
Fig. 9

Theoretical (solid curve) and experimental (dashed curve) sensitivities versus incident EM-field frequency.

Fig. 10
Fig. 10

Theoretical and experimental power-density resolution versus incident EM-field frequency.

Fig. 11
Fig. 11

(a) NEP that is due to the noise sources calculated for the prototype sensor in the incident EM-field frequency range 1–100 GHz. (b) Comparison of the total NEP level and the noise level that is due to 0.1-K room-temperature fluctuation.

Fig. 12
Fig. 12

Sensitivity versus the silicon etalon’s conductivity and (b) the incident E-field frequency. The data refer to a sensor similar in shape to the actual one.

Fig. 13
Fig. 13

Range of variation of the incident E-field intensity, showing a linear response within a 10% tolerance. The data refer to the prototype sensor and are plotted as a function of the microwave frequency in the range 2–20 GHz.

Fig. 14
Fig. 14

Power-density resolution versus cavity length d for an incident E-field frequency f = 1 GHz. Three main cases are considered: filiform or one-dimensional geometry, in which the a dimension varies while b and c are fixed at 10 µm; flat or two-dimensional geometry, in which a = b varies while c is fixed at 10 µm; and cubic or three-dimensional geometry, in which a = b = c varies from 10 to 10,000 µm. The a dimension coincides with cavity length d, and it is assumed to be oriented along the incident E-field direction.

Fig. 15
Fig. 15

Numerical simulation, showing the temperature transient response of a silicon parallelepiped sensing element of linear dimensions 10 µm × 10 µm × 1000 µm.

Tables (1)

Tables Icon

Table 1 Best Values of Conductivity for Ranges of Frequencies in Which the Sensor Response is Flat, and Corresponding Power Sensitivity and Power Resolution

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

Pdiss=12 σ |Einc|2I1εr-1+12+I12σ2ω2ε02,
I1=12 abc 0dss+a23/2s+b21/2s+c21/2.
2T=1γTt-1k Pdiss,
Ir=I0R1-R21-A1exp-αd+4R1R21-A1exp-αdsin2 δ1-R1R2 exp-αd2+4R1R2 exp-αdsin2 δ,
IrI0=1+π24F2 sin2 δ-1,
Iδ=Ir/Irmax.
I=IEinc2,
δ=δ0+δ1Einc2.
δ1  δEinc2=K0n0d01n0nT+1d0dTTPdissPdissEinc2.
S=ΔIΔEinc2
S=ΔIΔEinc2=Iδ δ1,
ΔEinc, min2=ΔEinc, π/22=Δδδ1  π/2K0d nTTPdissPdissEinc2=ΔTπ/2TPdissPdissEinc2,
Ilinδ=A+Bδ,
εlinδ=100 Ilinδ-IδIδ10%,
Δδphase  ΔΦ=ΔΦ21/2=4πndΔν/c1/2.
NEPphase=ΔEinc, phase2=Δδphase/δ1.
RIN=δIr2Ir2.
ΔIr, photon quantum=ΔIr21/2=2IrhνΔf1/2.
RINQ=2eΔfi.
NEPshot=ΔEinc,shot2=IEinc2-1 ΔIshot =Iδ δ1-1 ΔIshot,
ΔIshot=Δishot/Irmax,
Δith2ω  ith2ω=4kBT/R,
NEPtherm,sen=ΔEinc,therm,sen2=PdissEinc2-1 ΔPdiss =4 PdissEinc2-1 kBTΔf.
NEPtherm,phot=ΔEinc,therm,phot2=Iδ δ1-1Δith,photIrmax.
SNω=4ΔN2τ1+ω2τ2,
NEPG-R=ΔEinc,G-R2=Hσ, fσΔσHσ,fEinc2.
NEPtotal=NEPphase2+NEPshot2+NEPtherm,sens2+NEPtherm,phot2+NEPG-R21/2.

Metrics