Abstract

The absolute solar transmittance interferometer measures absolute solar radiance at the Earth’s surface. The instrument is based on a Fourier-transform spectrometer that utilizes a liquid-nitrogen-cooled InSb detector and appropriate optical bandpass filters. The recorded solar spectra are calibrated against National Institute of Standards and Technology traceable lamps and a blackbody source. The spectral range addressed by this instrument is from 1950 to 10100 cm-1 at a resolution of 2 cm-1. The optical design of the instrument and the experimental methods are discussed. A discussion of the uncertainties involving the instrument and the calibration sources is presented. Initial measurements from several sites are compared with atmospheric model calculations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
    [CrossRef]
  2. J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
    [CrossRef]
  3. G. Shaw, “Solar spectral irradiance and atmospheric transmission at Mauna Loa observatory,” Appl. Opt. 21, 2006–2011 (1982).
    [CrossRef] [PubMed]
  4. M. Thekaekara, R. Kruger, C. Duncan, “Solar irradiance measurements from a research aircraft,” Appl. Opt. 8, 1713–1732 (1969).
    [CrossRef] [PubMed]
  5. R. B. Lee, B. R. Barkstrom, R. D. Cess, “Characteristics of the Earth radiation budget experiment solar monitors,” Appl. Opt. 26, 3090–3096 (1987).
    [CrossRef]
  6. G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).
  7. A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
    [CrossRef]
  8. F. Ferlemann, N. Bauer, R. Fitzenberger, H. Harder, H. Osterkamp, D. Perner, U. Platt, M. Schneider, P. Vradelis, K. Pfeilsticker, “Differential optical absorption spectroscopy instrument for stratospheric balloon-borne trace-gas studies,” Appl. Opt. 39, 2377–2386 (2000).
    [CrossRef]
  9. P. Fogal, F. Murcray, “Derivation of temperature and humidity profiles from ground-based high-resolution infrared emission and transmission spectra,” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, ed., Proc. SPIE3867, 248–256 (1999).
    [CrossRef]
  10. F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
    [CrossRef]
  11. F. J. Murcray, J. J. Kosters, R. D. Blatherwick, J. Olson, D. G. Murcray, “High resolution solar spectrometer system for measuring atmospheric constituents,” Appl. Opt. 29, 1520–1525 (1990).
    [CrossRef] [PubMed]
  12. O. White, ed., The Solar Output and Its Variation (Colorado Associated U. Press, Boulder, 1977).
  13. P. Jeseck, C. Camy-Peyret, S. Payan, T. Hawat, “Detector nonlinearity correction scheme for the LPMA balloonborne Fourier transform spectrometer,” Appl. Opt. 37, 6544–6549 (1998).
    [CrossRef]
  14. J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
    [CrossRef]
  15. W. Schneider, D. Goebel, “Standard for calibration of optical radiation measurement systems,” Optronic Laboratories, Inc., 4632 36th Street, Orlando, Fla. 32811 (report of calibration, personal communication, 2000).
  16. R. H. Norton, R. Beer, “New apodizing functions for Fourier spectrometry,” J. Opt. Soc. Am. 66, 259–264 (1976).
    [CrossRef]
  17. E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
    [CrossRef]
  18. S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
    [CrossRef]
  19. J. Olson, J. Van Allen, P. Fogal, F. Murcray, A. Goldman, “Calibrated 0.1- cm-1 IR emission spectra from 80° N,” Appl. Opt. 35, 2797–2801 (1996).
    [CrossRef] [PubMed]

2000

1998

P. Jeseck, C. Camy-Peyret, S. Payan, T. Hawat, “Detector nonlinearity correction scheme for the LPMA balloonborne Fourier transform spectrometer,” Appl. Opt. 37, 6544–6549 (1998).
[CrossRef]

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

1997

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

1996

1995

S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

1991

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

1990

1987

R. B. Lee, B. R. Barkstrom, R. D. Cess, “Characteristics of the Earth radiation budget experiment solar monitors,” Appl. Opt. 26, 3090–3096 (1987).
[CrossRef]

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

1984

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

1982

1976

1974

E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

1969

Barbe, A.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Barkstrom, B. R.

Bauer, N.

Beer, R.

Ben-David, A.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

Blatherwick, R. D.

Brown, P.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

Camy-Peyret, C.

P. Jeseck, C. Camy-Peyret, S. Payan, T. Hawat, “Detector nonlinearity correction scheme for the LPMA balloonborne Fourier transform spectrometer,” Appl. Opt. 37, 6544–6549 (1998).
[CrossRef]

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Cess, R. D.

Clough, S.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

Clough, S. A.

S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Duncan, C.

Ferlemann, F.

Fitzenberger, R.

Flaud, J.-M.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Fogal, P.

J. Olson, J. Van Allen, P. Fogal, F. Murcray, A. Goldman, “Calibrated 0.1- cm-1 IR emission spectra from 80° N,” Appl. Opt. 35, 2797–2801 (1996).
[CrossRef] [PubMed]

P. Fogal, F. Murcray, “Derivation of temperature and humidity profiles from ground-based high-resolution infrared emission and transmission spectra,” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, ed., Proc. SPIE3867, 248–256 (1999).
[CrossRef]

Goebel, D.

W. Schneider, D. Goebel, “Standard for calibration of optical radiation measurement systems,” Optronic Laboratories, Inc., 4632 36th Street, Orlando, Fla. 32811 (report of calibration, personal communication, 2000).

Goldman, A.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

J. Olson, J. Van Allen, P. Fogal, F. Murcray, A. Goldman, “Calibrated 0.1- cm-1 IR emission spectra from 80° N,” Appl. Opt. 35, 2797–2801 (1996).
[CrossRef] [PubMed]

Gottlieb, D.

E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Goutail, J.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Hamdouni, A.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Harder, H.

Hawat, T.

Herman, B.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Jackson, J.

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

Jeseck, P.

Kosters, J. J.

Kruger, R.

Labs, D.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Landry, J.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

Lee, R. B.

Mielenz, K.

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

Mlawer, E.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

Murcay, F.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Murcray, D. G.

Murcray, F.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

J. Olson, J. Van Allen, P. Fogal, F. Murcray, A. Goldman, “Calibrated 0.1- cm-1 IR emission spectra from 80° N,” Appl. Opt. 35, 2797–2801 (1996).
[CrossRef] [PubMed]

P. Fogal, F. Murcray, “Derivation of temperature and humidity profiles from ground-based high-resolution infrared emission and transmission spectra,” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, ed., Proc. SPIE3867, 248–256 (1999).
[CrossRef]

Murcray, F. J.

Neckel, H.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Norton, R. H.

Olson, J.

Osterkamp, H.

Pastiels, R.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Payan, S.

Perner, D.

Pfeilsticker, K.

Pilewskie, P.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

Platt, U.

Reagan, J.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

Rinsland, C.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Saunders, R.

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

Schneider, M.

Schneider, W.

W. Schneider, D. Goebel, “Standard for calibration of optical radiation measurement systems,” Optronic Laboratories, Inc., 4632 36th Street, Orlando, Fla. 32811 (report of calibration, personal communication, 2000).

Schoenfeld, W.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

Scott-Fleming, I.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

Shaw, G.

Simon, P.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Smith, E.

E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Stephen, T.

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

Thekaekara, M.

Thuillier, G.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Van Allen, J.

Vradelis, P.

Walker, J.

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

Appl. Opt.

Geophys. Res. Lett.

F. Murcray, A. Goldman, J. Landry, T. Stephen, “O2 continuum: a possible explanation for the discrepancies between measured and modeled short-wave surface irradiances,” Geophys. Res. Lett. 24, 2315–2317 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

J. Reagan, P. Pilewskie, I. Scott-Fleming, B. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sens. 25, 647–653 (1987).
[CrossRef]

J. Geophys. Res.

E. Mlawer, S. Clough, P. Brown, T. Stephen, J. Landry, A. Goldman, F. Murcray, “Observed atmospheric collision-induced absorption in near-infrared oxygen bands,” J. Geophys. Res. 103, 3859–3863 (1998).
[CrossRef]

S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

A. Goldman, W. Schoenfeld, T. Stephen, F. Murcay, C. Rinsland, A. Barbe, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret, “Isotopic ozone in the 5-micron region from high resolution balloon-borne and ground-based FTIR solar spectra,” J. Quant. Spectrosc. Radiat. Transfer 59, 231–244 (1998).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

J. Walker, R. Saunders, J. Jackson, K. Mielenz, “Results of a CCPR intercomparison of spectral irradiance measurements by national laboratories,” J. Res. Natl. Inst. Stand. Technol. 96, 647–668 (1991).
[CrossRef]

Sol. Phys.

G. Thuillier, J. Goutail, P. Simon, R. Pastiels, D. Labs, H. Neckel, “Measurements of the solar spectral irradiance from 200 to 3000 nanometers,” Sol. Phys. 90, 205–207 (1984).

Space Sci. Rev.

E. Smith, D. Gottlieb, “Solar flux and its variations,” Space Sci. Rev. 16, 771–802 (1974).
[CrossRef]

Other

P. Fogal, F. Murcray, “Derivation of temperature and humidity profiles from ground-based high-resolution infrared emission and transmission spectra,” in Satellite Remote Sensing of Clouds and the Atmosphere IV, J. E. Russell, ed., Proc. SPIE3867, 248–256 (1999).
[CrossRef]

W. Schneider, D. Goebel, “Standard for calibration of optical radiation measurement systems,” Optronic Laboratories, Inc., 4632 36th Street, Orlando, Fla. 32811 (report of calibration, personal communication, 2000).

O. White, ed., The Solar Output and Its Variation (Colorado Associated U. Press, Boulder, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic layout of the ASTI optomechanical design. Sunlight, reflected by the acquisition mirror, is imaged through the circular aperture onto the detector. During the calibration phase, the acquisition mirror points to the lamp (figure not to scale).

Fig. 2
Fig. 2

Spectra used in calibration of ASTI data. The uncalibrated lamp and blackbody spectra are shown. The copper-point blackbody spectrum was used to produce the ASTI calibration spectrum from the lamp spectrum. The ASTI calibration spectrum should compare with the Optronics Laboratories spectrum. Their difference is also shown.

Fig. 3
Fig. 3

Calibrated solar spectra measured from Mount Evans, 22 September 1999, screened for clear sky and plotted for various solar zenith angles. The lower spectrum was recorded at 17:21 CDT with an atmospheric path of 4 air masses, and the upper spectrum was recorded at 12:30 CDT with an atmospheric path of 1.3 air masses. This is the first step in the determination of the exo-atmospheric solar radiance.

Fig. 4
Fig. 4

Comparison between modeled (solid curves), by use of the LBLRTM (HITRAN 96), and ASTI measured (dashed curves) transmission solar spectra in the 1.27-µm region. Two different solar zenith angles of 40° (upper curves) and 60° (lower curves) measured at an altitude of 1.6 km are shown. The solar line at 7800 cm-1 was not modeled. The differences between the measured and calculated spectra are shown at the bottom of the figure.

Fig. 5
Fig. 5

Comparison between measured and calculated spectra during the winter of 2000 in clear sky for the spectral range of 4400–5000 cm-1 at a zenith angle of 60.5° from the Southern Great Plains ARM site. ASTI2-04, solar radiances measured with the ASTI on 4 March; ASTI2-06, solar radiances measured with the ASTI on 6 March; LBLRTM-04, calculated radiance by the LBLRTM with sonde data from 4 March; and LBLRTM-06, calculated radiance by the LBLRTM with sonde data from 6 March. The measured and calculated spectra have been displaced vertically for clarity. The differences between the two days for the observed and the calculated spectra, excluding the contribution from solar absorption lines, are shown in the lower panel. OK, Oklahoma.

Tables (1)

Tables Icon

Table 1 Error Budget Calculated during the Operational Evaluation Periods from Three Different Sitesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E0ν=GSνV0ν.
Eradν=VSASTIνVLASTIν ηLMANUFν SνG,

Metrics