Abstract

The working principle of an optical isolator made of two corrugated dielectric gratings is introduced. One grating acts as a polarizer, and the other acts as a quarter-wave plate used in conical incidence converting linearly polarized light into circularly polarized light. Global maxima of diffraction efficiency for surface-corrugated gratings with binary, sinusoidal, and pyramidal ridge shapes with dependence on the material index are identified. Regarding technological feasibility for use in the visible wavelength range, high-frequency gratings with a binary shape were realized. With these gratings, an extinction ratio of more than 40 dB for the polarizer is theoretically possible, and more than 20 dB was experimentally achieved. A good correlation between theoretically calculated efficiencies and birefringences based on rigorous methods and the experimental results is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription