Abstract

Three different high-pressure flame measurement strategies for NO laser-induced fluorescence (LIF) with AX(0,0) excitation have been studied previously with computational simulations and experiments in flames up to 15 bars. Interference from O2 LIF is a significant problem in lean flames for NO LIF measurements, and pressure broadening and quenching lead to increased interference with increased pressure. We investigate the NO LIF signal strength, interference by hot molecular oxygen, and temperature dependence of the three previous schemes and for two newly chosen excitation schemes with wavelength-resolved LIF measurements in premixed methane and air flames at pressures between 1 and 60 bars and a range of fuel/air ratios. In slightly lean flames with an equivalence ratio of 0.83 at 60 bars, the contribution of O2 LIF to the NO LIF signal varies between 8% and 29% for the previous schemes. The O2 interference is best suppressed with excitation at 226.03 nm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  3. T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
    [CrossRef]
  4. C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames, in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 287–293.
    [CrossRef]
  5. J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  6. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
    [CrossRef]
  7. W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
    [CrossRef]
  8. F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
    [CrossRef]
  9. J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef] [PubMed]
  10. B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
    [CrossRef] [PubMed]
  11. W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
    [CrossRef]
  12. J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
    [CrossRef]
  13. F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
    [CrossRef]
  14. C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
    [CrossRef]
  15. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
    [CrossRef]
  16. G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1950).
  17. P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
    [CrossRef]
  18. B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
    [CrossRef]
  19. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
    [CrossRef]
  20. M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
    [CrossRef]
  21. M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
    [CrossRef]
  22. A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).
  23. F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.
  24. C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
    [CrossRef] [PubMed]
  25. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
    [CrossRef]
  26. A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
    [CrossRef]
  27. E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
    [CrossRef]
  28. B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
    [CrossRef]
  29. M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
    [CrossRef]
  30. W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
    [CrossRef]
  31. D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
    [CrossRef] [PubMed]
  32. J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
    [CrossRef]
  33. D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
    [CrossRef]
  34. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
    [CrossRef]
  35. I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
    [CrossRef]
  36. W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”
  37. We are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X(0,0), (0,1) and (0,2) excitation.”
  38. H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).
  39. L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
    [CrossRef]
  40. J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996).
    [CrossRef]
  41. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
    [CrossRef] [PubMed]
  42. C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
    [CrossRef]
  43. V. Sick (Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich.), W. Bessler, C. Schulz are preparing a manuscript to be called “NO spectra simulation code.”
  44. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Tranfer 57, 581–589 (1997).
    [CrossRef]
  45. C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992).
    [CrossRef]
  46. P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).
  47. F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
    [CrossRef]

2002 (1)

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

2001 (3)

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

1999 (2)

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

1998 (1)

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

1997 (5)

1996 (2)

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

1995 (6)

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

1994 (4)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

1993 (2)

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

1992 (2)

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

1986 (1)

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

1985 (1)

1982 (1)

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Battles, B. E.

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

Bessler, W. G.

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Bräumer, A.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Brockhinke, A.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Brugmann, T. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Campisi, A.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Canaan, R. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Carter, C. D.

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Chadwick, B. L.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Charlston-Goch, D.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Cooper, C. S.

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames, in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 287–293.
[CrossRef]

Cowles, L. M.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Crosley, D. R.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Dam, N.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Dam, N. J.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

Davidson, D. F.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Dec, J. E.

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Decker, M.

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

Dibble, R.

J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996).
[CrossRef]

Dillmann, M.

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

DiRosa, M. D.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

Dooley, P. M.

B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
[CrossRef]

Dreier, T.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Dreizler, A.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

Drewes, V.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Durant, J. L.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Eberius, H.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Furlanetto, M. R.

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Gibson, S. T.

B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
[CrossRef]

Gray, J. A.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Hanson, R. K.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

J. M. Seitzman, G. Kychakoff, R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
[CrossRef] [PubMed]

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Hartlieb, A. T.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Hartmann, M.

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Heinze, J.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1950).

Hildenbrand, F.

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

Höfner, G.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

Jander, H.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

Jeffries, J. B.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Just, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

Keller, F.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

Kick, T.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

Klassen, M. S.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

Klavuhn, K. G.

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

Koch, J. D.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Kohse-Höinghaus, K.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

König, G.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Kruger, C. H.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992).
[CrossRef]

Kuligowski, F. F.

Kychakoff, G.

Laudenslager, J. B.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

Laurendeau, N. M.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames, in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 287–293.
[CrossRef]

Laux, C. O.

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992).
[CrossRef]

Lee, T.

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Levinsky, H. B.

Lewis, B. R.

B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
[CrossRef]

Lutz, W.

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

Maas, U.

J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996).
[CrossRef]

Maly, R.

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

Maly, R. R.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

McDermid, I. S.

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

McMillin, B. K.

Meerts, W. L.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

Meerts, W. L. ter

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Meier, U.

Meier, U. E.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Meulen, J. J.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Mokhov, A. V.

Monkhouse, P. B.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

Morrison, R. J. S.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Palmer, J. L.

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

Partridge, W. P.

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

Paul, P. H.

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Tranfer 57, 581–589 (1997).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Piper, L. G.

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

Reisel, J. R.

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

Schenk, M.

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

Schulz, C.

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Seitzman, J. M.

Shin, D.

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

Sick, V.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

V. Sick (Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich.), W. Bessler, C. Schulz are preparing a manuscript to be called “NO spectra simulation code.”

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Spaanjaars, C. M. I.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

Stoffels, G. G. M.

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

Stricker, W.

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

ter Meulen, J. J.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

Thoman, J. W.

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

Thomsen, D. D.

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

van den Boom, E. J.

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

van der Meij, C. E.

Vyrodov, A. O.

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Vyrodow, A. O.

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Wagner, E.

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

Wagner, H. Gg.

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

Warnatz, J.

J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996).
[CrossRef]

Wolfrum, J.

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

Zahn, M.

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

Appl. Opt. (7)

W. P. Partridge, M. S. Klassen, D. D. Thomsen, N. M. Laurendeau, “Experimental assessment of O2 interferences on laser-induced fluorescence measurements of NO in high-pressure, lean premixed flames by use of narrow-band and broadband detection,” Appl. Opt. 34, 4890–4904 (1995).
[CrossRef]

B. K. McMillin, J. L. Palmer, R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532–7545 (1993).
[CrossRef] [PubMed]

C. Schulz, V. Sick, J. Heinze, W. Stricker, “Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with A–X(0,2) excitation,” Appl. Opt. 36, 3227–3232 (1997).
[CrossRef] [PubMed]

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, “Temperature dependence of laser-induced fluorescence of nitric oxide in laminar premixed atmospheric-pressure flames,” Appl. Opt. 36, 3233–3243 (1997).
[CrossRef] [PubMed]

D. D. Thomsen, F. F. Kuligowski, N. M. Laurendeau, “Background corrections for laser-induced-fluorescence measurements of nitric oxide in lean, high-pressure, premixed methane flames,” Appl. Opt. 36, 3244–3252 (1997).
[CrossRef] [PubMed]

C. Schulz, V. Sick, U. Meier, J. Heinze, W. Stricker, “Quantification of NO A–X(0,2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames,” Appl. Opt. 38, 1434–1443 (1999).
[CrossRef]

W. G. Bessler, F. Hildenbrand, C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures of No-seeded flame.” Appl. Opt. 40, 748–756 (2001).
[CrossRef]

Appl. Phys. B (6)

T. M. Brugmann, G. G. M. Stoffels, N. Dam, W. L. ter Meerts, J. J. Meulen, “Imaging and post-processing of laser-induced flourescence from NO in a Diesel engine,” Appl. Phys. B 64, 717–724 (1997).
[CrossRef]

F. Hildenbrand, C. Schulz, “Measurements and simulation of in-cylinder UV-absorption in spark ignition and Diesel engines,” Appl. Phys. B 73, 165–172 (2001).
[CrossRef]

P. H. Paul, J. A. Gray, J. L. Durant, J. W. Thoman, “A model for temperature-dependent collisional quenching of NO A2Σ+,” Appl. Phys. B 57, 249–259 (1993).
[CrossRef]

T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992).
[CrossRef]

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

A. O. Vyrodow, J. Heinze, M. Dillmann, U. E. Meier, W. Stricker, “Laser-induced fluorescence thermometry and concentration measurements on NO A–X (0,0) transitions in the exhaust gas of high pressure CH4/air flames,” Appl. Phys. B 61, 409–414 (1995).
[CrossRef]

Chem. Phys. Lett. (2)

V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the B state of O2,” Chem. Phys. Lett. 249, 335–340 (1996).
[CrossRef]

C. Schulz, J. D. Koch, D. F. Davidson, J. B. Jeffries, R. K. Hanson, “ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 2800 K,” Chem. Phys. Lett. 355, 82–88 (2002).
[CrossRef]

Combust. Flame (2)

J. R. Reisel, N. M. Laurendeau, “Quantitative LIF measurements and modeling of nitric oxide in high-pressure C2H4/O2/N2 flames,” Combust. Flame 101, 141–152 (1995).
[CrossRef]

D. Charlston-Goch, B. L. Chadwick, R. J. S. Morrison, A. Campisi, D. D. Thomsen, N. M. Laurendeau, “Laser-induced fluorescence measurements and modeling of nitric oxide in premixed flames of CO + H2 + CH4 and air at high pressures,” Combust. Flame 125, 729–743 (2001).
[CrossRef]

Combust. Sci. Technol. (1)

M. D. DiRosa, K. G. Klavuhn, R. K. Hanson, “LIF spectroscopy of NO and O2 in high-pressure flames,” Combust. Sci. Technol. 118, 257–283 (1996).
[CrossRef]

J. Chem. Phys. (2)

L. G. Piper, L. M. Cowles, “Einstein coefficients and transition moment variation for the NO (A2Σ+-X2II) transition,” J. Chem. Phys. 85, 2419–2422 (1986).
[CrossRef]

B. R. Lewis, S. T. Gibson, P. M. Dooley, “Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen,” J. Chem. Phys. 100, 7012–7035 (1994).
[CrossRef]

J. Mol. Spectrosc. (1)

M. D. DiRosa, R. K. Hanson, “Collision-broadening and -shift of NO γ(0,0) absorption lines by H2O, O2 and NO at 295 K,” J. Mol. Spectrosc. 164, 97–117 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Tranfer (2)

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Tranfer 57, 581–589 (1997).
[CrossRef]

C. O. Laux, C. H. Kruger, “Arrays of radiative transition probabilities for the N2 first and second positive, NO beta and gamma, N2+ first negative, and O2 Schumann-Runge band systems,” J. Quant. Spectrosc. Radiat. Tranfer 48, 9–24 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (4)

B. E. Battles, R. K. Hanson, “Laser-induced fluorescence measurements of NO and OH mole fraction in fuel-lean, high-pressure (1–10 atm) methane flames: fluorescence modeling and experimental validation,” J. Quant. Spectrosc. Radiat. Transfer 54, 521–537 (1995).
[CrossRef]

I. S. McDermid, J. B. Laudenslager, “Radiative lifetimes and electronic quenching rate constants for single-photon-excited rotational levels of NO(A2Σ+, v′ = 0),” J. Quant. Spectrosc. Radiat. Transfer 27, 483–492 (1982).
[CrossRef]

M. D. DiRosa, R. K. Hanson, “Collisional broadening and shift of NO γ(0,0) absorption lines by O2 and H2O at high temperatures,” J. Quant. Spectrosc. Radiat. Transfer 52, 515–529 (1994).
[CrossRef]

A. O. Vyrodov, J. Heinze, U. E. Meier, “Collisional broadening of spectral lines in the A-X(0,0) system of NO by N2, Ar, and He at elevated pressures measured by laser-induced fluorescence,” J. Quant. Spectrosc. Radiat. Transfer 53, 277–287 (1995).

Opt. Lett. (1)

Prog. Energy Combust. Sci. (1)

K. Kohse-Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Shock Waves (1)

J. L. Palmer, R. K. Hanson, “Shock tunnel flow visualization using planar laser-induced fluorescence imaging of NO and OH,” Shock Waves 4, 313–323 (1995).
[CrossRef]

VDI Verlag (1)

F. Hildenbrand, C. Schulz, V. Sick, H. Jander, H. Gg. Wagner, “Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames,” Deutscher Flammentag, VDI-Gesellschaft Energietechnik-Düsseldorf, VDI Verlag 1492pp. 269–274 (1999),.

Other (16)

A. C. Eckbreth, Laser Diagnostics for Combustion, Temperature, and Species, 2nd ed. (Gordon and Breach, Amsterdam, The Netherlands, 1996).

C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative 2D single-shot imaging of NO concentrations and temperatures in a transparent SI engine,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., (1996), pp. 2597–2604.
[CrossRef]

G. Herzberg, Spectra of Diatomic Molecules, Vol. 1 of Molecular Spectra and Molecular Structure (Krieger, Malabar, Fla., 1950).

C. S. Cooper, N. M. Laurendeau, “Parametric study of NO production via quantitative laser-induced fluorescence in high-pressure, swirl-stabilized spray flames, in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 287–293.
[CrossRef]

J. E. Dec, R. E. Canaan, “PLIF imaging of NO formation in a DI Diesel engine,” SAE 980147 (Society of Automotive Engineers, Warrendale, Pa., 1998).

A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, R. R. Maly, M. Zahn, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent SI engine,” SAE 952462 (Society of Automotive Engineers, Warrendale, Pa., 1995).
[CrossRef]

W. G. Bessler, C. Schulz, M. Hartmann, M. Schenk, “Quantitative in-cylinder NO-LIF imaging in a direct-injected gasoline engine with exhaust gas recirculation,” SAE 2001-01-1978 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

F. Hildenbrand, C. Schulz, J. Wolfrum, F. Keller, E. Wagner, “Laser diagnostic analysis of NO formation in a direct injection Diesel engine with pump-line nozzle and common-rail injection systems,” in Proceedings of the Combustion Institute (Combustion Institute, Pittsburgh, Pa., 2000), Vol. 28, pp. 1137–1144.
[CrossRef]

E. J. van den Boom, P. B. Monkhouse, C. M. I. Spaanjaars, W. L. Meerts, N. J. Dam, J. J. ter Meulen, “Laser diagnostics in a diesel engine,” in ROMOPTO 2000: Sixth Conference on Optics, V. I. Vlad, ed., Proc. SPIE4430, 593–606 (2001).
[CrossRef]

P. H. Paul, C. D. Carter, J. A. Gray, J. L. Durant, J. W. Thoman, M. R. Furlanetto, “Correlations for the NO A2Σ+ (v′ = 0) electronic quenching cross-section,” Sandia Rep. SAND94–8237 UC-1423 (Sandia National Laboratory, Livermore, Calif., 1995).

F. Hildenbrand, C. Schulz, F. Keller, G. König, E. Wagner, “Quantitative laser diagnostic studies of the NO distribution in a DI Diesel engine with PLN and CR injection systems,” SAE Tech. Paper 2001-01-3500 (Society of Automotive Engineers, Warrendale, Pa., 2001).
[CrossRef]

W. G. Bessler, C. Schulz, T. Lee, D. Shin (Stanford University), J. B. Jeffries, R. K. Hanson, are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation,”

We are preparing a manuscript to be called “Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X(0,0), (0,1) and (0,2) excitation.”

H. Eberius, T. Just, T. Kick, G. Höfner, W. Lutz, “Stabilization of premixed, laminar methane flames in the pressure regime up to 40 bar,” in Proceedings of the Joint Meeting German/Italian Section (Ravello, Italy, 1989).

J. Warnatz, U. Maas, R. Dibble, Combustion (Springer-Verlag, Berlin, 1996).
[CrossRef]

V. Sick (Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich.), W. Bessler, C. Schulz are preparing a manuscript to be called “NO spectra simulation code.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement. ICCD, Intensified Charge-coupled device.

Fig. 2
Fig. 2

Construction of an excitation fluorescence chart from measured spectra (a) CCD acquisition of fluoresence intensity versus position along the laser beam with the laser wavelength-tuned resonant with excitation of DiRosa (upper) and Sick (lower) transitions (mditp = 60 bar, ϕ = 0.83). The center core of the premixed flame (marked by two lines) is averaged over the spatial axis, and the resulting fluorescence spectrum is plotted below each image. Note that the interference of simultaneous O2 LIF is evident for the Sick excitation. These spectra become the appropriate excitation wavelength in the excitation fluorescence charts (b). (b) Excitation fluorescence chart for a spectral range near the Sick transition for the p = 40 bar, ϕ = 0.83 flame. The arrow in the excitation spectrum indicates the position of the R 1 + Q 21(21.5) Sick transition where the emission spectrum was extracted. The arrow in the emission spectrum indicates the NO A–X(0,1) emission where the excitation spectrum was extracted.

Fig. 3
Fig. 3

Fluorescence excitation spectra for the five candidate transitions for the lean ϕ = 0.93 flames plotted for selected pressures. The arrows indicate the candidate line positions at 1 bar.

Fig. 4
Fig. 4

Fluorescence emission spectra for the five candidate transitions for the p = 40 bar, ϕ = 0.83 flame. At 225–230 nm, intense Rayleigh scattering adds to the NO (0,0) LIF signal.

Fig. 5
Fig. 5

Fluorescence emission spectra for the Sick transition for the p = 5, 20, and 60 bar, ϕ = 0.83, 0.93, 1.03, and 1.14 flames. At 225–230 nm, intense Rayleigh scattering adds to the NO (0,0) LIF signal.

Fig. 6
Fig. 6

Example of the nonlinear least-squares fit of seven Gaussians (three for O2 and four for NO) to the fluorscence spectra between 230 and 253 nm after the Laurendeau transition is excited at p = 40 bar, ϕ = 0.83.

Fig. 7
Fig. 7

Total NO fluorescence signal between 230 and 253 nm for the candidate excitation wavelengths.

Fig. 8
Fig. 8

Calculations of the pressure dependence of the NO LIF signal for T = 2000 K; laser linewidths of 0.25, 0.4, and 0.5 cm-1; and constant NO mole fraction for the DiRosa and Sick transitions. Upper panels: LIF signal for excitation at peak for each individual pressure. Lower panels: loss of NO LIF signal when a constant excitation wavelength is used for a wide pressure range instead of actual pressure-shifted excitation wavelengths optimized for each pressure.

Fig. 9
Fig. 9

O2 LIF contribution to the total NO plus O2 LIF signal between 230 and 253 nm.

Fig. 10
Fig. 10

Temperature dependence of the NO LIF signal for the number density. Stimulation for p = 10 bars.

Fig. 11
Fig. 11

Temperature dependence of the NO LIF signal for the mole fraction. Simulation for p = 10 bar.

Tables (1)

Tables Icon

Table 1 Investigated Transitions

Metrics