Abstract

We show that the large-size parameter limit of the scattering efficiency of a spherical particle of relative refractive index m r embedded in an absorbing medium is equal to |m r - 1|2/|m r + 1|2 and not to zero as has been claimed in a recent article [J. Appl. Opt. 40, 1354–1361 (2001)].

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Fu, W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001).
    [CrossRef]
  2. A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).
  3. I. W. Sudiarta, P. Chýlek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275–1278 (2001).
    [CrossRef]
  4. I. W. Sudiarta, P. Chýlek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quantum Spectrosc. Radiat. Transfer 70, 709–714 (2001).
    [CrossRef]
  5. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 342.

2001 (3)

1999 (1)

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

Chýlek, P.

I. W. Sudiarta, P. Chýlek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quantum Spectrosc. Radiat. Transfer 70, 709–714 (2001).
[CrossRef]

I. W. Sudiarta, P. Chýlek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275–1278 (2001).
[CrossRef]

Fu, Q.

Gartz, M.

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 342.

Kreibig, U.

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

Lebedev, A. N.

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

Stenzel, O.

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

Sudiarta, I. W.

I. W. Sudiarta, P. Chýlek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quantum Spectrosc. Radiat. Transfer 70, 709–714 (2001).
[CrossRef]

I. W. Sudiarta, P. Chýlek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275–1278 (2001).
[CrossRef]

Sun, W.

Appl. Opt. (1)

J. Eur. Phys. D (1)

A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” J. Eur. Phys. D 6, 365–373 (1999).

J. Opt. Soc. Am. A (1)

J. Quantum Spectrosc. Radiat. Transfer (1)

I. W. Sudiarta, P. Chýlek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quantum Spectrosc. Radiat. Transfer 70, 709–714 (2001).
[CrossRef]

Other (1)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999), p. 342.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Extinction (Qext), scattering (Qsca), and absorption (Qabs) efficiencies for a sphere with a refractive index m 1 = 1.34 + 0.01i and m 2 = 2.0 + 0.05i, embedded in an absorbing medium with refractive index m med = 1 + 10-4 i. R1 and R2 are the reflectances of a plane surface at normal incidence for refractive indices m 1 and m 2, respectively. T1 and T2 are the transmissions of a plane surface at normal incidence for refractive indices m 1 and m 2, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

limx Qsca= mr-1mr+12,
limx Qabs=1-Qsca=1- mr-1mr+12=4Remr|mr+1|2,

Metrics