Abstract

Changes in structureless spectra that are due to the presence of interfering absorbers or light source instabilities, changes in the spectral transfer function of the optics, and changes in the detector’s spectral responsivity degrade measurement accuracy. A method of compensating for changes in structureless spectra is developed for a gas-filter correlation instrument. It is shown that there are points in the spectrum where the effect of the interfering component’s having a structureless spectrum on the measurement can be drastically reduced.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Burch, D. A. Gryvnak, “Cross-stack measurement of pollutant concentrations using gas-cell correlation spectroscopy,” in Analytical Methods Applied to Air Pollution Measurements, R. K. Stevens, ed. (Ann Arbor Science, Ann Arbor, Mich., 1974), pp. 193–231.
  2. J. Laurent, “Radiometre a modulation selective pour la detection a distance de pollutants gazeax,” Mes. Regul. Autom. 7, 39–46 (1977).
  3. W. J. Baker, “Systematic approaches to continuous infrared analyzes sensitization,” Anal. Chem. 28, 1391–1396 (1954).
    [Crossref]
  4. O. G. Koppius, “Analysis of mixtures with double-beam nondispersive infrared instrument,” Anal. Chem. 23, 554–559 (1951).
    [Crossref]
  5. M. W. Smith, “Method and results for optimizing the MOPITT methane bandpass,” Appl. Opt. 36, 4285–4291 (1997).
    [Crossref] [PubMed]
  6. D. J. Brassington, “Sulfur dioxide absorption cross-section measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774–3779 (1981).
    [Crossref] [PubMed]
  7. A. Barbe, Yu. N. Ponomarev, R. Zander, Atmospheric Spectroscopy Applications Workshop Proceedings (Institute of Atmospheric Optics, Tomsk, 1990).
  8. R. L. Spellicy, “An introduction to analytical methods for optical monitors,” in Proceedings of AW&MA’s Ninety-third Annual Conference and Exhibition, CD-ROM (Air & Waste Management Association, Pittsburgh, Pa., 2000), paper 227.
  9. Catalog of Products Oriel Corporation, 250 Long Beach Blvd., P.O. Box 872, Stratford, Conn., 06497.
  10. V. V. Beloborodov, A. I. Reshetnikov, “Correlation radiometer,” Russian patent1533490, application 4335374 (Priority, November30, 1987; registered, January27, 1993).

1997 (1)

1981 (1)

1977 (1)

J. Laurent, “Radiometre a modulation selective pour la detection a distance de pollutants gazeax,” Mes. Regul. Autom. 7, 39–46 (1977).

1954 (1)

W. J. Baker, “Systematic approaches to continuous infrared analyzes sensitization,” Anal. Chem. 28, 1391–1396 (1954).
[Crossref]

1951 (1)

O. G. Koppius, “Analysis of mixtures with double-beam nondispersive infrared instrument,” Anal. Chem. 23, 554–559 (1951).
[Crossref]

Baker, W. J.

W. J. Baker, “Systematic approaches to continuous infrared analyzes sensitization,” Anal. Chem. 28, 1391–1396 (1954).
[Crossref]

Beloborodov, V. V.

V. V. Beloborodov, A. I. Reshetnikov, “Correlation radiometer,” Russian patent1533490, application 4335374 (Priority, November30, 1987; registered, January27, 1993).

Brassington, D. J.

Burch, D. E.

D. E. Burch, D. A. Gryvnak, “Cross-stack measurement of pollutant concentrations using gas-cell correlation spectroscopy,” in Analytical Methods Applied to Air Pollution Measurements, R. K. Stevens, ed. (Ann Arbor Science, Ann Arbor, Mich., 1974), pp. 193–231.

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, “Cross-stack measurement of pollutant concentrations using gas-cell correlation spectroscopy,” in Analytical Methods Applied to Air Pollution Measurements, R. K. Stevens, ed. (Ann Arbor Science, Ann Arbor, Mich., 1974), pp. 193–231.

Koppius, O. G.

O. G. Koppius, “Analysis of mixtures with double-beam nondispersive infrared instrument,” Anal. Chem. 23, 554–559 (1951).
[Crossref]

Laurent, J.

J. Laurent, “Radiometre a modulation selective pour la detection a distance de pollutants gazeax,” Mes. Regul. Autom. 7, 39–46 (1977).

Reshetnikov, A. I.

V. V. Beloborodov, A. I. Reshetnikov, “Correlation radiometer,” Russian patent1533490, application 4335374 (Priority, November30, 1987; registered, January27, 1993).

Smith, M. W.

Spellicy, R. L.

R. L. Spellicy, “An introduction to analytical methods for optical monitors,” in Proceedings of AW&MA’s Ninety-third Annual Conference and Exhibition, CD-ROM (Air & Waste Management Association, Pittsburgh, Pa., 2000), paper 227.

Anal. Chem. (2)

W. J. Baker, “Systematic approaches to continuous infrared analyzes sensitization,” Anal. Chem. 28, 1391–1396 (1954).
[Crossref]

O. G. Koppius, “Analysis of mixtures with double-beam nondispersive infrared instrument,” Anal. Chem. 23, 554–559 (1951).
[Crossref]

Appl. Opt. (2)

Mes. Regul. Autom. (1)

J. Laurent, “Radiometre a modulation selective pour la detection a distance de pollutants gazeax,” Mes. Regul. Autom. 7, 39–46 (1977).

Other (5)

D. E. Burch, D. A. Gryvnak, “Cross-stack measurement of pollutant concentrations using gas-cell correlation spectroscopy,” in Analytical Methods Applied to Air Pollution Measurements, R. K. Stevens, ed. (Ann Arbor Science, Ann Arbor, Mich., 1974), pp. 193–231.

A. Barbe, Yu. N. Ponomarev, R. Zander, Atmospheric Spectroscopy Applications Workshop Proceedings (Institute of Atmospheric Optics, Tomsk, 1990).

R. L. Spellicy, “An introduction to analytical methods for optical monitors,” in Proceedings of AW&MA’s Ninety-third Annual Conference and Exhibition, CD-ROM (Air & Waste Management Association, Pittsburgh, Pa., 2000), paper 227.

Catalog of Products Oriel Corporation, 250 Long Beach Blvd., P.O. Box 872, Stratford, Conn., 06497.

V. V. Beloborodov, A. I. Reshetnikov, “Correlation radiometer,” Russian patent1533490, application 4335374 (Priority, November30, 1987; registered, January27, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of GFC instrument.

Fig. 2
Fig. 2

Bandpass filter profile used for calculations.

Fig. 3
Fig. 3

Method of spectral compensation.

Fig. 4
Fig. 4

O3 interference. a, Absorption cross sections of SO2 and O3 (square centimeters). b, Signal; w r = 500 ppm m, w i1 = 250,000 ppm m, w i2 = 270,000 ppm m, w m = 0, Δλ(0.5) = 4 nm. c, Signal; w r = 500 ppm m, w i1 = 250,000 ppm m, w i2 = 270,000 ppm m, w m = 0, Δλ(0.5) = 3 nm. d, Signal; w r = 500 ppm m, w i1 = 250,000 ppm m, w i2 = 270,000 ppm m, w m = 0, Δλ(0.5) = 2 nm.

Fig. 5
Fig. 5

NO2 interference. a, Absorption cross sections of SO2 and NO2 (square centimeters). b, Signal; w r = 500 ppm m, w i1 = 0, w i2 = 10,000 ppm m, w m = 0, Δλ(0.5) = 2 nm.

Fig. 6
Fig. 6

HCHO interference. a, Absorption cross sections of SO2 and HCHO (square centimeters). b, Signal; w r = 500 ppm m, w i1 = 0, w i2 = 10,000 ppm m, w m = 0, Δλ(0.5) = 2 nm. c, Signal; w r = 500 ppm m, w i1 = 0, w i2 = 10,000 ppm m, w m = 0, Δλ(0.5) = 1 nm.

Fig. 7
Fig. 7

Curve illustrating the signal output for w m = 500 ppm m of SO2 in the sample cell in the absence of any interfering absorbers for Δλ(0.5) = 2 nm and w r = 500 ppm m.

Fig. 8
Fig. 8

O3 interference. Signal, w r = 500 ppm m, w i1 = 250,000 ppm m, w i2 = 270,000 ppm m, w m = 500 ppm m, Δλ(0.5) = 2 nm.

Fig. 9
Fig. 9

NO2 interference. Signal, w r = 500 ppm m, w i1 = 0, w i2 = 10,000 ppm m, w m = 500 ppm m, Δλ(0.5) = 2 nm.

Fig. 10
Fig. 10

HCHO interference. Signal, w r = 500 ppm m, w i1 = 0, w i2 = 10,000 ppm m, w m = 500 ppm m, Δλ(0.5) = 2 nm.

Fig. 11
Fig. 11

HCHO interference for the GFC instrument with compensator cell 1. a, Absorption cross sections of SO2 and HCHO (square centimeters). b, Signal, w r = 500 ppm m, w i1 = 0, w i2 = 50,000 ppm m, w m = 0, w c = 100,000 ppm m, Δλ(0.5) = 1 nm. c, Signal, w r = 500 ppm m, w i1 = 0, w i2 = 50,000 ppm m, w m = 500 ppm m, w c = 100,000 ppm m, Δλ(0.5) = 1 nm. d, Signal, w r = 500 ppm m, w i1 = 0, w i2 = 0, w m = 500 ppm m, w c = 100,000 ppm m, Δλ(0.5) = 1 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S=S1-S2/S1.
S1=+- IS,λTS,λTN,λTF,λTO,λRD,λdλ,
S2=+- IS,λTS,λTR,λTF,λTO,λRD,λdλ.
TS,λ=TS,I,λTS,M,λ.
Tλ=exp-KλCL.
S1=+- IS,λTS,λTC1,λTN,λTF,λTO,λRD,λdλ,
S2=+- IS,λTS,λTC1,λTR,λTF,λTO,λRD,λdλ.

Metrics