Abstract

An optical beam profiler is introduced that uses a two-dimensional (2-D) small-tilt micromirror device. Its key features include fast speed, digital control, low polarization sensitivity, and wavelength independence. The use of this 2-D multipixel device opens up the important possibility of realizing several beam profile measurement concepts, such as a moving knife edge, a scanning slit, a moving pinhole, a variable aperture, and a 2-D photodiode array. The experimental proof of the optical beam profiler concept using a 2-D digital micromirror device to simulate the 2-D moving knife edge indicates a small measurement error of 0.19% compared with the expected number based on a Gaussian beam-propagation analysis. Other 2-D pixel arrays such as a liquid-crystal-based 90° polarization rotator sandwiched between crossed polarizers can also be exploited for the optical beam whose polarization direction is known.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Arnaud, C. Neck, “Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam,” U.S. patent3,617,755 (2November1971).
  2. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971).
    [CrossRef] [PubMed]
  3. T. F. Johnston, G. H. Williams, “Apparatus for measuring the mode quality of a laser beam,” U.S. patent5,064,284 (12November1991).
  4. P. J. Shayler, “Laser beam distribution in the focal region,” Appl. Opt. 17, 2673–2674 (1978).
    [CrossRef] [PubMed]
  5. P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
    [CrossRef]
  6. M. K. Giles, E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R. L. Galawa, ed., Proc. SPIE500, 67–70 (1984).
    [CrossRef]
  7. C. P. Wang, “Measuring 2-D laser-beam phase and intensity profiles: a new technique,” Appl. Opt. 23, 1399–1402 (1984).
    [CrossRef] [PubMed]
  8. E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
    [CrossRef]
  9. S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
    [CrossRef]
  10. J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
    [CrossRef]
  11. A. Rose, Y.-X. Nie, R. Gupta, “Laser beam profile measurement by photothermal deflection technique,” Appl. Opt. 25, 1738–1741 (1986).
    [CrossRef] [PubMed]
  12. T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
    [CrossRef]
  13. N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
    [CrossRef]
  14. R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).
    [CrossRef]
  15. S. Sumriddetchkajorn, “Fiber-optic beam control systems using microelectromechanical systems (MEMS),” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2000).
  16. J. T. Verdeyen, “Gaussian beams,” in Laser Electronics, 3rd ed., (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 63–85.
  17. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38, 3214–3222 (1999).
    [CrossRef]
  18. S. Yuan, N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses: errata,” Appl. Opt. 38, 6292 (1999).
    [CrossRef]
  19. Gary Forrest, SensorPhysics Inc., Oldsmar,Fla. 34677 (personal communication, 1999).

1999 (3)

1986 (2)

A. Rose, Y.-X. Nie, R. Gupta, “Laser beam profile measurement by photothermal deflection technique,” Appl. Opt. 25, 1738–1741 (1986).
[CrossRef] [PubMed]

T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

1984 (1)

1983 (1)

J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

1980 (1)

S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

1978 (1)

1975 (2)

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

1971 (1)

Anthes, J. P.

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Arai, T.

T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Arnaud, J. A.

J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, J. M. Franke, “Technique for fast measurement of Gaussian laser beam parameters,” Appl. Opt. 10, 2775–2776 (1971).
[CrossRef] [PubMed]

J. A. Arnaud, C. Neck, “Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam,” U.S. patent3,617,755 (2November1971).

Baba, T.

T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Brannon, P. J.

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Cano, G. L.

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

de la Clavière, B.

Forrest, Gary

Gary Forrest, SensorPhysics Inc., Oldsmar,Fla. 34677 (personal communication, 1999).

Franke, E. A.

Franke, J. M.

Giles, M. K.

M. K. Giles, E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R. L. Galawa, ed., Proc. SPIE500, 67–70 (1984).
[CrossRef]

Granneman, E. H. A.

E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

Gupta, R.

Hubbard, W. M.

Johnston, T. F.

T. F. Johnston, G. H. Williams, “Apparatus for measuring the mode quality of a laser beam,” U.S. patent5,064,284 (12November1991).

Kim, E. M.

M. K. Giles, E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R. L. Galawa, ed., Proc. SPIE500, 67–70 (1984).
[CrossRef]

Klein, M. P.

S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

Knipe, R. L.

R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).
[CrossRef]

Knudtson, J. T.

J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Mandeville, G. D.

Neck, C.

J. A. Arnaud, C. Neck, “Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam,” U.S. patent3,617,755 (2November1971).

Nie, Y.-X.

Ono, A.

T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

Powell, J. E.

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Ratzlaff, K. L.

J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Riza, N. A.

Rose, A.

Shayler, P. J.

Sorscher, S. M.

S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

Sumriddetchkajorn, S.

N. A. Riza, S. Sumriddetchkajorn, “Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device,” Opt. Lett. 24, 282–284 (1999).
[CrossRef]

S. Sumriddetchkajorn, “Fiber-optic beam control systems using microelectromechanical systems (MEMS),” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2000).

van der Wiel, M. J.

E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, “Gaussian beams,” in Laser Electronics, 3rd ed., (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 63–85.

Wang, C. P.

Williams, G. H.

T. F. Johnston, G. H. Williams, “Apparatus for measuring the mode quality of a laser beam,” U.S. patent5,064,284 (12November1991).

Yuan, S.

Appl. Opt. (6)

J. Appl. Phys. (1)

P. J. Brannon, J. P. Anthes, G. L. Cano, J. E. Powell, “Laser focal spot measurements,” J. Appl. Phys. 46, 3576–3579 (1975).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (4)

T. Baba, T. Arai, A. Ono, “Laser beam profile measurement by a thermographic technique,” Rev. Sci. Instrum. 57, 2739–2742 (1986).
[CrossRef]

E. H. A. Granneman, M. J. van der Wiel, “Laser beam waist determination by means of multiphoton ionization,” Rev. Sci. Instrum. 46, 332–334 (1975).
[CrossRef]

S. M. Sorscher, M. P. Klein, “Profile of a focussed collimated laser beam near the focal minimum characterized by fluorescence correlation spectroscopy,” Rev. Sci. Instrum. 51, 98–102 (1980).
[CrossRef]

J. T. Knudtson, K. L. Ratzlaff, “Laser beam spatial profile analysis using a two-dimensional photodiode array,” Rev. Sci. Instrum. 54, 856–860 (1983).
[CrossRef]

Other (7)

M. K. Giles, E. M. Kim, “Linear systems approach to fiber characterization using beam profile measurements,” in Fiber Optics: Short-Haul and Long-Haul Measurements and Applications II, R. L. Galawa, ed., Proc. SPIE500, 67–70 (1984).
[CrossRef]

T. F. Johnston, G. H. Williams, “Apparatus for measuring the mode quality of a laser beam,” U.S. patent5,064,284 (12November1991).

Gary Forrest, SensorPhysics Inc., Oldsmar,Fla. 34677 (personal communication, 1999).

R. L. Knipe, “Challenges of a digital micromirror device™: modeling and design,” in Micro-optical Technologies for Measurement, Sensors, and Microsystems, O. M. Parriaux, ed., Proc. SPIE2783, 135–145 (1996).
[CrossRef]

S. Sumriddetchkajorn, “Fiber-optic beam control systems using microelectromechanical systems (MEMS),” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2000).

J. T. Verdeyen, “Gaussian beams,” in Laser Electronics, 3rd ed., (Prentice-Hall, Englewood Cliffs, N.J., 1995), pp. 63–85.

J. A. Arnaud, C. Neck, “Apparatus for locating and measuring the beam-waist radius of a Gaussian laser beam,” U.S. patent3,617,755 (2November1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic structure of the MEMS-based digitally controlled optical beam profiler using a 2-D small-tilt micromirror device.

Fig. 2
Fig. 2

Optical beam profile measurements using a commercial CCD-based optical beam profiler: (a) 2-D image of the optical beam, and the measured optical beam profile along the (b) x axis and (c) y axis.

Fig. 3
Fig. 3

Simulation of a 2-D knife edge moved along the (a) x axis and (b) y axis.

Fig. 4
Fig. 4

Relationship between the measured normalized optical power and the equivalent position of the simulating knife edge along the (a) x axis and (b) y axis.

Fig. 5
Fig. 5

Simulation plots between the normalized optical power and the equivalent position of the simulating knife edge for w min of 2d, 5d, and 10d; d = 17 µm for a TI 2-D DMD.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P=erf2x0/wxz,
wxz=w0x1+λz/πw0x22.
P=1-erf2x0/wxz.
wmin=Ndd/2, wmin=10d.

Metrics