Abstract

We investigate the recording dynamics of Omnidex photopolymer film from DuPont. We use a reviewed version of the diffusion model proposed by Zhao and Mouroulis [J. Mod. Opt. 41, 1929 (1994)] in order to describe the recording response that combined photopolymerization and free-monomer diffusion process. Two different experiments are detailed that lead to the determination of material kinetic parameters. These values are introduced in the numerical model to provide quantitative simulations of a grating formation under various holographic exposures. Theoretical results are experimentally checked as a validation of the model. We extend its applications to several secondary investigations, such as volume-shrinkage influence on refractive-index distribution and spectral selectivity of reflection gratings. This study improves the understanding of the recording process and consequently allows to build more accurate holographic components in this material to be built.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription