Abstract

We investigate the recording dynamics of Omnidex photopolymer film from DuPont. We use a reviewed version of the diffusion model proposed by Zhao and Mouroulis [J. Mod. Opt. 41, 1929 (1994)] in order to describe the recording response that combined photopolymerization and free-monomer diffusion process. Two different experiments are detailed that lead to the determination of material kinetic parameters. These values are introduced in the numerical model to provide quantitative simulations of a grating formation under various holographic exposures. Theoretical results are experimentally checked as a validation of the model. We extend its applications to several secondary investigations, such as volume-shrinkage influence on refractive-index distribution and spectral selectivity of reflection gratings. This study improves the understanding of the recording process and consequently allows to build more accurate holographic components in this material to be built.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593–601 (1975).
    [CrossRef] [PubMed]
  2. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
    [CrossRef]
  3. K. Curtis, D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396–5399 (1994).
    [CrossRef] [PubMed]
  4. H. J. Zhou, V. Morozov, J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995).
    [CrossRef] [PubMed]
  5. V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
    [CrossRef]
  6. W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
    [CrossRef]
  7. U.-S. Rhee, H. J. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymers,” Appl. Opt. 34, 846–852 (1995).
    [CrossRef] [PubMed]
  8. R. Kostuk, “Dynamic hologram recording characteristics in DuPont photopolymers,” Appl. Opt. 38, 1357–1363 (1999).
    [CrossRef]
  9. J. T. Gallo, C. M. Verber, “Model for the effect of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
    [CrossRef] [PubMed]
  10. C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
    [CrossRef]
  11. G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  12. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
    [CrossRef]
  13. J. H. Kwon, H. C. Hwang, K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume grating formed in photopolymer,” J. Opt. Soc. Am. B 16, 1651–1657 (1999).
    [CrossRef]
  14. S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
    [CrossRef] [PubMed]
  15. S. Piazzolla, B. K. Jenkins, “Dynamic during holographic exposure in photopolymers for single and multiplexe gratings,” J. Mod. Opt. 46, 2079–2110 (1999).
  16. S. Piazzolla, B. K. Jenkins, “First-harmonic diffusion model for holographic grating forma tion in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  17. J. D. Ferry, Viscoelastic Properties of Polymers, (John Wiley & Sons Inc., 1980), Chap. 17.
  18. V. Moreau, Y. Renotte, Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., SPIE Proc.3951, 108–115 (2000).
    [CrossRef]
  19. H. Kogelniek, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  20. H. J. Coufal, D. Psaltis, G. T. Sincerbox (eds), Holographic Data Storage, Springer Series in Optical Sciences, (Springer-VerlagBerlin, 2000).
    [CrossRef]

2000 (2)

V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
[CrossRef]

S. Piazzolla, B. K. Jenkins, “First-harmonic diffusion model for holographic grating forma tion in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
[CrossRef]

1999 (3)

1997 (2)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

1996 (1)

1995 (2)

1994 (3)

1993 (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

1975 (1)

1969 (1)

H. Kogelniek, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Booth, B. L.

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymers,” Appl. Opt. 34, 846–852 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Curtis, K.

Duzick, T.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Ferry, J. D.

J. D. Ferry, Viscoelastic Properties of Polymers, (John Wiley & Sons Inc., 1980), Chap. 17.

Fu, Z.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Gallo, J. T.

Gambogi, W.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Hanzavy, B.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Hwang, H. C.

Jenkins, B. K.

Kelly, T.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Kogelniek, H.

H. Kogelniek, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kostuk, R.

Kwon, J. H.

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Lion, Y.

V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
[CrossRef]

V. Moreau, Y. Renotte, Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., SPIE Proc.3951, 108–115 (2000).
[CrossRef]

Liu, J.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Mackara, S.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Moreau, V.

V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
[CrossRef]

V. Moreau, Y. Renotte, Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., SPIE Proc.3951, 108–115 (2000).
[CrossRef]

Morozov, V.

Mouroulis, P.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Neff, J.

Piazzolla, S.

Psaltis, D.

Renotte, Y.

V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
[CrossRef]

V. Moreau, Y. Renotte, Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., SPIE Proc.3951, 108–115 (2000).
[CrossRef]

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymers,” Appl. Opt. 34, 846–852 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, C. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymers,” Appl. Opt. 34, 846–852 (1995).
[CrossRef] [PubMed]

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Steijn, K.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Verber, C. M.

Vikram, C.

Virkam, C. S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Woo, K. C.

Zhao, C.

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Zhao, G.

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Zhou, H. J.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

C. Zhao, J. Liu, Z. Fu, R. T. Chen, “Shrinkage-corrected volume holograms based on photopolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464–1466 (1997).
[CrossRef]

Bell System Tech. J. (1)

H. Kogelniek, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997).
[CrossRef]

J. Mod. Opt. (2)

S. Piazzolla, B. K. Jenkins, “Dynamic during holographic exposure in photopolymers for single and multiplexe gratings,” J. Mod. Opt. 46, 2079–2110 (1999).

G. Zhao, P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Mater. Sci. Sem. Proc. (1)

V. Moreau, Y. Renotte, Y. Lion, “Planar integration of a polarization-insensitive optical switch with holographic element,” Mater. Sci. Sem. Proc. 3, 551–555 (2000).
[CrossRef]

Opt. Eng. (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Virkam, M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 38, 1839–1847 (1993).
[CrossRef]

Opt. Lett. (1)

Other (4)

H. J. Coufal, D. Psaltis, G. T. Sincerbox (eds), Holographic Data Storage, Springer Series in Optical Sciences, (Springer-VerlagBerlin, 2000).
[CrossRef]

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hanzavy, T. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

J. D. Ferry, Viscoelastic Properties of Polymers, (John Wiley & Sons Inc., 1980), Chap. 17.

V. Moreau, Y. Renotte, Y. Lion, “Planar-integrated interferometric sensor with holographic gratings,” in Diffractive/Holographic Technologies and Spatial Light Modulators VII, I. Cindrich, S. H. Lee, R. L. Sutherland, eds., SPIE Proc.3951, 108–115 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for real-time measurement of DuPont photopolymer shrinkage.

Fig. 2
Fig. 2

Real-time measurement of photopolymer HRF-600 shrinkage under various uniform irradiance. Total thickness of the film is 20 µm.

Fig. 3
Fig. 3

Experimental setup for real-time measurement of index modulation in DuPont photopolymer.

Fig. 4
Fig. 4

Time evolution of index modulation in photopolymer after a 2-s irradiation. Total intensity is 10 mW/cm2 and interference fringe spacing is 0.5 µm, t = 0 corresponds to the illumination turn-off.

Fig. 5
Fig. 5

Time evolution of index modulation in uniformly preexposed photopolymer samples. Preexposure irradiation is 5 mW/cm2 during various times: 2 s, 3 s, 4 s, 5 s, and 10 s. Corresponding normalized polymer density are deduced from Fig. 2. Interferometric irradiation is 10 mW/cm2 during 2 s. Fringe spacing is 0.5 µm, t = 0 corresponds to the illumination turn-off.

Fig. 6
Fig. 6

Diffusion coefficient decrease versus the normalized polymer density.

Fig. 7
Fig. 7

Comparison between measured index-modulation growth and diffusion-model predictions for various recording powers. Recording wavelength is λr = 514.5 nm and fringe spacing is Δ = 0.5 µm.

Fig. 8
Fig. 8

Index-modulation profiles for various recording powers.

Fig. 9
Fig. 9

Computation (rigourous coupled wave analysis) of diffraction efficiency for orders 1 and 2 versus incident angles in the following condition λ = 632.8 nm, Δ = 0.5 µm, film thickness is 20 µm, real-index profile is taken from Fig. 7 (100 mW/cm2).

Fig. 10
Fig. 10

Diffusion model simulation of the index distribution in the thickness of a holographic mirror submitted to shrinkage during the recording process. Recording interference phase is locked in z = 0 and maximum optical thickness change is assumed to be 350 nm.

Tables (2)

Tables Icon

Table 1 Fitting Parameters for Photopolymer Shrinkage

Tables Icon

Table 2 Fitting Parametera

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

I2R·.
R·+MRM·RM·+MRM2·RMn·+MRMn+1·
RMm·+RMn·RMm+nR.
ux, tt= xDx, tux, tx-F x, tux, t,
px, tt=F x, tux, t.
nx, tt=cnux, t+px, tt=cnxDx, tux, tx,
-utt=F tut=Ri+Rp.
Ri=2ΦIa,
Rpt=kpu tCrt,
Rt=2ktCr2=Ri,
Rpt=kpu tRi2kt1/2.
Ft= kp2kt Ri1/2+1ut Ri.
Ft=κI01/2t,
Fx, t=κ I0t1+V cosKx1/2,
κ=kpΦ1-Tkt1/2
V=2I1I2I1+I2
Dx, t=D01-exp-c u0px, t,
pt=u01-exp-κI01/2t.
κt=κ01-exp1-σt,
Δdt=Δdmax1-expκ0I01/21-exp-σtt.
px, t=Δpt1+cosKx,
px, te+u x, te=constant=u0.
ux, te=u0-Δu te1+cosKx,
ux, tt =Dte2ux, tx2
ux, t= u0-Δu te-Δu tcosKx,
Δut=Δu teexp-DteK2t-te.
Δnt=cnΔpte-Δu teexp-DteK2t-te.
Δn= λ cos θi2πdarcsinη,
Δnt=C1-C2 exp-t-teτt-C3 exp- t-teτd,
K=1.269 × 105 cm-1.
Dte=1τdK2 =6.52 × 10-11 cm2/s.
c=0.052.
Dp x, t=6.81×10-111-exp× -0.052 u0px, tcm2/s,

Metrics