Abstract

Optical coatings offer a solution to the problem of damage to paintings, caused by ultraviolet and infrared radiation, by cutting radiation wavelengths outside the visible range. Simultaneously, these coatings can enhance an observer’s viewing of the paintings by reducing the reflections from ordinary glass panes. All these functions should be performed by the same coating. The design of such a coating, as well as the evaluation of existing products, requires the definition of an appropriate merit function in which coating absorption, high transparency, and color rendering are combined.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Thomson, “A new look at color rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6, 49–69 (1961).
    [CrossRef]
  2. R. L. Feller, “The deteriorating effect of light on museum objects: principles of photochemistry, effect of varnishes and paint vehicles,” Mus. News 42 (1964).
  3. R. L. Feller, “Control of deteriorating effects of light: heating effect of illumination by incandescent lamps,” Mus. News 46 (1968).
  4. P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).
  5. Commission Internationale de L’Eclairage, Recommendation on Uniform Color Spaces, Color Difference Equations, Psychometric Color Terms, Suppl. 2 to CIE Publication 15 (CIE, Wien, 1978).
  6. International Organization for Standardization, “Glass in building—determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors,” Draft International Standard ISO/DIS 9050 (ISO, Geneva, Switzerland, 2001).
  7. J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.1. Forderungen an die Beleuchtung,” Lichttechnik 30, 66–70 (1978).
  8. J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.2. Tageslicht in Museen,” Lichttechnik 30, 104–105 (1978).
  9. M. Rubin, Lawrence Berkeley National Laboratory, Berkeley, Calif., 94720 (personal communication, 1997).
  10. F. C. Breckenridge, W. R. Schaub, “Rectangular uniform-chromaticity-scale coordinates,” J. Opt. Soc. Am. 29, 370–379 (1939).
    [CrossRef]
  11. EU Project, Daylighting Products with Redirecting Visual Properties, REVIS (coordinated by D. van Dijk, TNO-Building and Construction Research) in Joule III Programme (European Commission, Brussels, 1998–2000, contract JOE3-CT98–0096).
  12. D. van Dijk, The REVIS View Through Index, REVIS Final Document 20 (2001).
  13. B. Simmingsköld, B. R. Jönsson, “A quantitative method for the determination of the degree of colorlessness of decolorized glass and some applications in laboratory and production practice,” in Proceedings of the IVme Congrès International du Verre (International Commission on Glass, n.p., 1956), pp. 203–206.
  14. G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).
  15. S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
    [CrossRef]

2000 (1)

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

1999 (1)

S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
[CrossRef]

1998 (1)

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

1978 (2)

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.1. Forderungen an die Beleuchtung,” Lichttechnik 30, 66–70 (1978).

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.2. Tageslicht in Museen,” Lichttechnik 30, 104–105 (1978).

1968 (1)

R. L. Feller, “Control of deteriorating effects of light: heating effect of illumination by incandescent lamps,” Mus. News 46 (1968).

1964 (1)

R. L. Feller, “The deteriorating effect of light on museum objects: principles of photochemistry, effect of varnishes and paint vehicles,” Mus. News 42 (1964).

1961 (1)

G. Thomson, “A new look at color rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6, 49–69 (1961).
[CrossRef]

1939 (1)

Battaglin, G.

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

Bravin, F.

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

Breckenridge, F. C.

Feller, R. L.

R. L. Feller, “Control of deteriorating effects of light: heating effect of illumination by incandescent lamps,” Mus. News 46 (1968).

R. L. Feller, “The deteriorating effect of light on museum objects: principles of photochemistry, effect of varnishes and paint vehicles,” Mus. News 42 (1964).

Jönsson, B. R.

B. Simmingsköld, B. R. Jönsson, “A quantitative method for the determination of the degree of colorlessness of decolorized glass and some applications in laboratory and production practice,” in Proceedings of the IVme Congrès International du Verre (International Commission on Glass, n.p., 1956), pp. 203–206.

Krochmann, J.

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.1. Forderungen an die Beleuchtung,” Lichttechnik 30, 66–70 (1978).

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.2. Tageslicht in Museen,” Lichttechnik 30, 104–105 (1978).

Menelle, A.

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

Montecchi, M.

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

Nichelatti, E.

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

Pase, M.

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

Polato, P.

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

Ramasamy, P.

S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
[CrossRef]

Rubin, M.

M. Rubin, Lawrence Berkeley National Laboratory, Berkeley, Calif., 94720 (personal communication, 1997).

Schaub, W. R.

Shanti, S.

S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
[CrossRef]

Simmingsköld, B.

B. Simmingsköld, B. R. Jönsson, “A quantitative method for the determination of the degree of colorlessness of decolorized glass and some applications in laboratory and production practice,” in Proceedings of the IVme Congrès International du Verre (International Commission on Glass, n.p., 1956), pp. 203–206.

Subramanian, C.

S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
[CrossRef]

Thomson, G.

G. Thomson, “A new look at color rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6, 49–69 (1961).
[CrossRef]

van Dijk, D.

EU Project, Daylighting Products with Redirecting Visual Properties, REVIS (coordinated by D. van Dijk, TNO-Building and Construction Research) in Joule III Programme (European Commission, Brussels, 1998–2000, contract JOE3-CT98–0096).

D. van Dijk, The REVIS View Through Index, REVIS Final Document 20 (2001).

Vio, M.

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

Cryst. Res. Technol. (1)

S. Shanti, C. Subramanian, P. Ramasamy, “Investigation on the optical properties of undoped, fluorine doped and antimony doped tin oxide films,” Cryst. Res. Technol. 34, 1037–1046 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

Lichttechnik (2)

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.1. Forderungen an die Beleuchtung,” Lichttechnik 30, 66–70 (1978).

J. Krochmann, “Zur Frange der Beleuchtung von Museen. T.2. Tageslicht in Museen,” Lichttechnik 30, 104–105 (1978).

Mus. News (2)

R. L. Feller, “The deteriorating effect of light on museum objects: principles of photochemistry, effect of varnishes and paint vehicles,” Mus. News 42 (1964).

R. L. Feller, “Control of deteriorating effects of light: heating effect of illumination by incandescent lamps,” Mus. News 46 (1968).

Riv. Stazione Sperimentale Vetro (2)

P. Polato, F. Bravin, M. Pase, M. Vio, “Preliminary investigations of ultraviolet glazing protection on paintings in museums,” Riv. Stazione Sperimentale Vetro 28, 209–218 (1998).

G. Battaglin, A. Menelle, M. Montecchi, E. Nichelatti, P. Polato, “Characterization of silver-based coatings by neutron reflectometry and other complementary techniques,” Riv. Stazione Sperimentale Vetro 30, 111–116 (2000).

Stud. Conserv. (1)

G. Thomson, “A new look at color rendering, level of illumination, and protection from ultraviolet radiation in museum lighting,” Stud. Conserv. 6, 49–69 (1961).
[CrossRef]

Other (6)

M. Rubin, Lawrence Berkeley National Laboratory, Berkeley, Calif., 94720 (personal communication, 1997).

Commission Internationale de L’Eclairage, Recommendation on Uniform Color Spaces, Color Difference Equations, Psychometric Color Terms, Suppl. 2 to CIE Publication 15 (CIE, Wien, 1978).

International Organization for Standardization, “Glass in building—determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors,” Draft International Standard ISO/DIS 9050 (ISO, Geneva, Switzerland, 2001).

EU Project, Daylighting Products with Redirecting Visual Properties, REVIS (coordinated by D. van Dijk, TNO-Building and Construction Research) in Joule III Programme (European Commission, Brussels, 1998–2000, contract JOE3-CT98–0096).

D. van Dijk, The REVIS View Through Index, REVIS Final Document 20 (2001).

B. Simmingsköld, B. R. Jönsson, “A quantitative method for the determination of the degree of colorlessness of decolorized glass and some applications in laboratory and production practice,” in Proceedings of the IVme Congrès International du Verre (International Commission on Glass, n.p., 1956), pp. 203–206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Transmittance of uncoated glass samples and (b) transmittance of coated glass samples (bottom: enlarged region of the spectrum).

Fig. 2
Fig. 2

Histogram of the UV transmission and corresponding color fading of the specimens protected by different uncoated and coated glass samples. The dark bars represent UV transmittance; and the gray bars represent the color difference with respect to the unexposed specimens (the color change of the paint without any protection is ΔE = 29).

Fig. 3
Fig. 3

(a) Transmittance of a coating that does not introduce modification of color. (b) Chromatic coordinates (x, y) in the CIE 1931 diagram (refer to illuminant D 65), related to reflectance and transmittance (+ +) of the coating in (a).

Fig. 4
Fig. 4

Transmittance curve of an ideal coating having maximum transmission in the visible range and null transmission outside this range.

Fig. 5
Fig. 5

Histogram of the UV transmittance, damage factor, and corresponding color fading for different glass samples: The dark bars represent the UV transmittance, the gray bars represent the damage factor, and the crosshatched bars represent the change of color for a 1-yr test (the paint material and the set of glass samples are different with respect to the ones considered in Fig. 2).

Fig. 6
Fig. 6

Transmittance (solid curve) and reflectance (dashed curve) curves of a commercial plastic sheet (not applied to a glass pane): (a) UV–VIS–NIR range and (b) UV–VIS range.

Fig. 7
Fig. 7

Transmittance (solid curve) and reflectance (dashed curve) curves of a low-emissivity coated glass.

Fig. 8
Fig. 8

Transmittance and reflectance curves of doped tin oxide films with different doping levels.15

Tables (3)

Tables Icon

Table 1 Uncoated and Coated Glass Samples

Tables Icon

Table 2 Parameters of a Coated Glass That Should Be Optimized for the Protection of Paintingsa

Tables Icon

Table 3 UV, Visible, and NIR Parameters Obtained for a Gray Plastic Sheet (Not Applied onto a Glass Pane) and a Glass with a Coating Based on Two Silver Layers

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x"=-0.74220x-1.39315y+0.690451.00000x-7.05336y-1.64023,y"=3.18076x-1.43590y-0.522211.00000x-7.05336y-1.64023.
IVT=τV2-AρρV2-3600x"2+y"21/2,
fτV=1for τV  0.8τV0.82for τV < 0.8.

Metrics