Abstract

We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air|Ag|Alq3|Ag|glass]; type B, of [air|dielectric|Alq3|dielectric|glass]; and type C, of [air|Ag|Alq3|dielectric|glass]. A bare Alq3 film of [air|Alq3|glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15–27.5, 7–10.5, and 16–16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
    [CrossRef]
  2. N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
    [CrossRef]
  3. A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
    [CrossRef]
  4. T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
    [CrossRef]
  5. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
    [CrossRef]
  6. H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
    [CrossRef]
  7. S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
    [CrossRef]
  8. V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
    [CrossRef] [PubMed]
  9. M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
    [CrossRef]
  10. P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
    [CrossRef] [PubMed]
  11. H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
    [CrossRef]
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001).
  13. K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
    [CrossRef]

1999 (3)

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
[CrossRef]

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

1998 (3)

K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
[CrossRef]

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
[CrossRef]

1997 (2)

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

1996 (1)

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

1995 (1)

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

1994 (1)

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

1993 (1)

N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
[CrossRef]

Bao, Z.

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

Becker, H.

H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
[CrossRef]

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Berggren, M.

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

Berthelot, L.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

Bradley, D. D. C.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Bulovic, V.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

Burns, S. E.

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Fisher, T. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Forrest, S. R.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

Friend, R. H.

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
[CrossRef]

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Gagnaire, A.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

Higginson, K. A.

K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
[CrossRef]

Ho, P. K. H.

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

Joseph, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

Khalfin, V. B.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

Kozlov, V. G.

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

Kwock, E. W.

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Lidzey, D. G.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001).

Masenelli, B.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Papadimitrakopoulos, F.

K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
[CrossRef]

Pate, M. A.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

Saito, S.

N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
[CrossRef]

Skolnick, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Slusher, R. E.

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

Taga, Y.

S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
[CrossRef]

Takada, N.

N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
[CrossRef]

Tardy, J.

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

Tessler, N.

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

Thomas, D. S.

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

Tokito, S.

S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
[CrossRef]

Tsutsui, T.

S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
[CrossRef]

N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
[CrossRef]

Weaver, M. S.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Whittaker, D. M.

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

Wilkinson, T. D.

H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
[CrossRef]

Zhang, X. M.

K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

N. Takada, T. Tsutsui, S. Saito, “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett. 63, 2032–2034 (1993).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, T. M. Miller, E. W. Kwock, “Microcavity effects in organic semiconductors,” Appl. Phys. Lett. 64, 2486–2488 (1994).
[CrossRef]

T. A. Fisher, D. G. Lidzey, M. A. Pate, M. S. Weaver, D. M. Whittaker, M. S. Skolnick, D. D. C. Bradley, “Electroluminescence from a conjugated polymer microcavity structure,” Appl. Phys. Lett. 67, 1355–1357 (1995).
[CrossRef]

H. Becker, R. H. Friend, T. D. Wilkinson, “Light emission from wavelength-tunable microcavities,” Appl. Phys. Lett. 72, 1266–1268 (1998).
[CrossRef]

Chem. Mater. (1)

K. A. Higginson, X. M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3),” Chem. Mater. 10, 1017–1020 (1998).
[CrossRef]

J. Appl. Phys. (4)

B. Masenelli, A. Gagnaire, L. Berthelot, J. Tardy, J. Joseph, “Controlled spontaneous emission of a tri(8-hydroxyquinoline) aluminum layer in a microcavity,” J. Appl. Phys. 85, 3032–3037 (1999).
[CrossRef]

H. Becker, S. E. Burns, N. Tessler, R. H. Friend, “Role of optical properties of metallic mirrors in microcavity structures,” J. Appl. Phys. 81, 2825–2829 (1997).
[CrossRef]

S. Tokito, T. Tsutsui, Y. Taga, “Microcavity organic-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, 2407–2411 (1999).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 6954–6964 (1996).
[CrossRef]

Science (2)

V. Bulovic, V. G. Kozlov, V. B. Khalfin, S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279, 553–555 (1998).
[CrossRef] [PubMed]

P. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, “All-polymer optoelectronic devices,” Science 285, 233–236 (1999).
[CrossRef] [PubMed]

Synth. Met. (1)

M. Berggren, A. Dodabalapur, R. E. Slusher, Z. Bao, “Organic lasers based on Forster transfer,” Synth. Met. 91, 65–68 (1997).
[CrossRef]

Other (1)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the organic microcavity structure. The microcavity is sandwiched between the top and bottom mirrors.

Fig. 2
Fig. 2

Phase change on reflection at interface A of (a) [Alq3|Ag|air] for Ag layers of thicknesses 40, 50, and 60 nm and of (b) [Alq3|α(LH)6|air] at α = 0.96, 1.00, 1.04 at normal incidence as a function of wavelength. n Alq3 = 1.74, N Ag = 0.05 - i2.95, n H = 2.35, and n L = 1.46 at 510 nm.

Fig. 3
Fig. 3

Phase change on reflection at interface A of (a) [Alq3|Ag|air] for Ag layers of thicknesses 40, 50, and 60 nm and (b) [Alq3|α(LH)6|air] at α = 0.96, 1.00, 1.04 at a wavelength of 510 nm as a function of incident angle.

Fig. 4
Fig. 4

Transmittance of s- and p-polarized light at incident angles of 0°, 30°, and 60° as a function of wavelength.

Fig. 5
Fig. 5

(a) Transmittance and absorptance of a bare Alq3 film. (b) PL spectra of a bare Alq3 film at excitation wavelengths of 320, 350, and 390 nm.

Fig. 6
Fig. 6

PL peak intensities as a function of the RW in a type A microcavity. The thicknesses of the spacer layer and of the metal mirrors were varied as listed in Table 1.

Fig. 7
Fig. 7

PL peak intensities as a function of the RW in a type B microcavity. The thicknesses of the spacer layer, and of dielectric quarter-wave layers α and β were varied as listed in Table 1.

Fig. 8
Fig. 8

PL peak intensities as a function of the RW in a type C microstructure. The thickness of the spacer layer of the dielectric quarter-wave layers, α, and period n were varied as listed in Table 1. The PL peak intensity is enhanced by an increase in the period of the dielectric multilayer.

Fig. 9
Fig. 9

FWHM of the three types of Fabry-Perot microcavity listed in Table 1.

Fig. 10
Fig. 10

Dependence of the RW on incident angle for a type B microcavity.

Tables (1)

Tables Icon

Table 1 Physical and Optical Thicknesses of Fabry-Perot Microcavity Typesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=TaTb1-RaRb211+4RaRb1-RaRb2sin2Δ2,
Δ=Φa+Φb-2δ;
λm=4πnd cos θΦa+Φb-2πm.

Metrics