Abstract

A black layer coating for an aluminum–photoresist interface with a reflectance less than 0.1% for 413-nm, s-polarized light incident at 25° is described. It is made of space-compatible materials, and its rms roughness is less than 15 Å.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
    [CrossRef]
  2. G. Hass, H. H. Schroeder, A. F. Turner, “Mirror coatings for low visible and high infrared reflectance,” J. Opt. Soc. Am. 46, 31–35 (1956).
    [CrossRef]
  3. J. A. Dobrowolski, “Versatile computer program for absorbing optical thin film systems,” Appl. Opt. 20, 74–81 (1981).
    [CrossRef] [PubMed]
  4. J. A. Dobrowolski, E. H. Hara, B. T. Sullivan, A. J. Waldorf, “High performance optical wavelength multiplexer–demultiplexer,” Appl. Opt. 31, 3800–3806 (1992).
    [CrossRef] [PubMed]
  5. J. A. Dobrowolski, B. T. Sullivan, R. C. Bajcar, “Optical interference, contrast-enhanced electroluminescent device,” Appl. Opt. 31, 5988–5996 (1992).
    [CrossRef] [PubMed]
  6. B. T. Sullivan, K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results,” Appl. Opt. 34, 5684–5694 (1995).
    [CrossRef] [PubMed]
  7. J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

1995

1992

1981

1979

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

1956

A. Dobrowolski, J.

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Bajcar, R. C.

Byrt, K. L.

Cassidy, T.

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Dobrowolski, J. A.

Hara, E. H.

Hass, G.

McElroy, C. T.

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Midwinter, C.

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Moran, J.

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

Poitras, D.

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Schroeder, H. H.

Sinclair, W.

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

Sullivan, B. T.

Tai, K.

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

Turner, A. F.

Vadimsky, R.

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

Waldorf, A. J.

Appl. Opt.

J. Opt. Soc. Am.

J. Vac. Sci. Technol.

K. Tai, W. Sinclair, R. Vadimsky, J. Moran, “Bilevel high resolution photolithographic technique for use with wafers with stepped and/or reflecting surfaces,” J. Vac. Sci. Technol. 16, 1977–1979 (1979).
[CrossRef]

Other

J. A. Dobrowolski, D. Poitras, T. Cassidy, C. Midwinter, C. T. McElroy, “Black layer coatings for the photolithographic manufacture of diffraction gratings,” in Optical Interference Coatings, A. A. Sawchauk, ed., Vol. 63 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. ThC2–1–ThC2–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross section of the required optical component.

Fig. 2
Fig. 2

Calculated reflectance and refractive-index profiles of three- and five-layer black coatings for a substrate–photoresist interface.

Fig. 3
Fig. 3

Calculated reflectance and refractive-index profiles of three- and five-layer black coatings for a substrate–air interface.

Fig. 4
Fig. 4

Measured optical constants of all the materials used in the manufacture of the black layer coatings (a)–(c) Inconel layer with different thicknesses, (d) SiO2, (e) thin Inconel oxide, (f) thin a-Si.

Fig. 5
Fig. 5

Two different approaches to overcoming the effect of the oxidation of Inconel layers. (a) Compensation for the loss of Inconel thickness and adjustment of layer thicknesses to allow for the presence of Inconel oxide interfaces. (b) Prevention of the formation of the Inconel oxide layers by the deposition of a thin a-Si layer in an Ar residual atmosphere.

Fig. 6
Fig. 6

Thickness-determination sensitivity and performance sensitivity for each layer of a five-layer black coating in air. The graphs in the left column show calculated transmittance spectra simulating optical monitor measurements for each layer and how they are affected by an error in the layer thickness. The graphs in the right column show the effect of these errors on the final coating performance.

Fig. 7
Fig. 7

Experimental measurements on the black coatings for use in photoresist. (a) Measurement in air. (b) Estimated performance.

Fig. 8
Fig. 8

Experimental measurements on the black coatings for use in air. (a) three-layer and (b) five-layer coatings.

Tables (2)

Tables Icon

Table 1 Performance Specifications for the Black Layer Coatings

Tables Icon

Table 2 Designs for Black Layer Coatings for Use in Photoresist and in Air

Metrics