Abstract

We produce overcoated microspheres and try to obtain artificial optical powders with specific spectral properties. Electron-beam deposition is used with a particular vibration system. Calibration and characterization results are presented that validate the techniques and procedures for single-layers and quarter-wave mirrors.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Amra, S. Maure, “Electromagnetic power provided by sources within multilayer optics: free space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997).
    [CrossRef]
  2. F. Lemarchand, H. Giovannini, A. Sentenac, “Interest of hybrid structures for thin-film design: multilayered subwavelength microgratings,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE3133, 58–64 (1997).
  3. R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).
  4. D. Maystre, G. Tayeb, D. Felbacq, “Electromagnetic study of photonic band structures and Anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–165.
  5. W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
    [CrossRef]
  6. K. J. Balkus, A. S. Scott, “Molecular sieve coatings on spherical substrates via pulsed laser deposition,” Microporous Mesoporous Mater. 34, 31–42 (2000).
    [CrossRef]
  7. C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
    [CrossRef]
  8. J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
    [CrossRef]
  9. C. Amra, C. Grèzes-Besset, P. Roche, E. Pelletier, “Description of a scattering apparatus: application to the problems of characterization of opaque surfaces,” Appl. Opt. 28, 2723–2730 (1989).
    [CrossRef] [PubMed]
  10. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Appl. Opt. 32, 5481–5491 (1993).
    [CrossRef] [PubMed]
  11. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994).
    [CrossRef]
  12. C. Amra, “Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226 (1994).
    [CrossRef]
  13. J. M. Elson, J. P. Rahn, J. M. Bennett, “Light scattering from multilayer optics: comparison of theory and experiment,” Appl. Opt. 19, 669–679 (1980).
    [CrossRef] [PubMed]
  14. S. Kassam, A. Duparré, K. Hehl, P. Bussemer, J. Neubert, “Light scattering from the volume of optical thin films: theory and experiment,” Appl. Opt. 31, 1304–1313 (1992).
    [CrossRef] [PubMed]
  15. G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
    [CrossRef]
  16. S. Prasad, W. Guo, “Multiple-scattering approach to Mie scattering from a sphere of arbitrary size,” Opt. Commun. 136, 447–460 (1997).
    [CrossRef]
  17. D. Brady, G. C. Papen, J. E. Sipe, “Spherical distributed dielectric resonators,” J. Opt. Soc. Am. B 10, 644–657 (1993).
    [CrossRef]
  18. T. Rother, K. Schmidt, “The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries,” J. Quant. Spectrosc. Radiat. Transfer 55, 615–625 (1996).
    [CrossRef]
  19. M. I. Mishchenko, A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167–179 (2000).
    [CrossRef]
  20. H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
    [CrossRef]
  21. F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
    [CrossRef] [PubMed]
  22. W. Q. Chen, H. J. Ding, “Free vibration of multilayered spherically isotropic hollow spheres,” Int. J. Mech. Sci. 43, 667–680 (2001).
    [CrossRef]
  23. A. Brunsting, P. F. Mullaney, “Light scattering from coated spheres: model for biological cells,” Appl. Opt. 11, 675–680 (1972).
    [CrossRef] [PubMed]

2001

W. Q. Chen, H. J. Ding, “Free vibration of multilayered spherically isotropic hollow spheres,” Int. J. Mech. Sci. 43, 667–680 (2001).
[CrossRef]

2000

M. I. Mishchenko, A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167–179 (2000).
[CrossRef]

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

K. J. Balkus, A. S. Scott, “Molecular sieve coatings on spherical substrates via pulsed laser deposition,” Microporous Mesoporous Mater. 34, 31–42 (2000).
[CrossRef]

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

1999

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

1998

H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

1997

S. Prasad, W. Guo, “Multiple-scattering approach to Mie scattering from a sphere of arbitrary size,” Opt. Commun. 136, 447–460 (1997).
[CrossRef]

C. Amra, S. Maure, “Electromagnetic power provided by sources within multilayer optics: free space and modal patterns,” J. Opt. Soc. Am. A 14, 3102–3113 (1997).
[CrossRef]

1996

T. Rother, K. Schmidt, “The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries,” J. Quant. Spectrosc. Radiat. Transfer 55, 615–625 (1996).
[CrossRef]

1995

1994

1993

1992

1989

1983

J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

1980

1972

Amra, C.

Balkus, K. J.

K. J. Balkus, A. S. Scott, “Molecular sieve coatings on spherical substrates via pulsed laser deposition,” Microporous Mesoporous Mater. 34, 31–42 (2000).
[CrossRef]

Bennett, J. M.

Borgogno, J. P.

J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Botten, L. C.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Brady, D.

Brunsting, A.

Burlak, G.

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

Bussemer, P.

Cadilhac, M.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Chan, C. T.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Chen, W. Q.

W. Q. Chen, H. J. Ding, “Free vibration of multilayered spherically isotropic hollow spheres,” Int. J. Mech. Sci. 43, 667–680 (2001).
[CrossRef]

Derrick, G. H.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Ding, H. J.

W. Q. Chen, H. J. Ding, “Free vibration of multilayered spherically isotropic hollow spheres,” Int. J. Mech. Sci. 43, 667–680 (2001).
[CrossRef]

Duparré, A.

Elson, J. M.

Felbacq, D.

D. Maystre, G. Tayeb, D. Felbacq, “Electromagnetic study of photonic band structures and Anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–165.

Giovannini, H.

F. Lemarchand, H. Giovannini, A. Sentenac, “Interest of hybrid structures for thin-film design: multilayered subwavelength microgratings,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE3133, 58–64 (1997).

Gouesbet, G.

H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[CrossRef] [PubMed]

Gréhan, G.

H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

F. Onofri, G. Gréhan, G. Gouesbet, “Electromagnetic scattering from a multilayered sphere located in an arbitrary beam,” Appl. Opt. 34, 7113–7124 (1995).
[CrossRef] [PubMed]

Grèzes-Besset, C.

Grimalsky, V.

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

Guo, W.

S. Prasad, W. Guo, “Multiple-scattering approach to Mie scattering from a sphere of arbitrary size,” Opt. Commun. 136, 447–460 (1997).
[CrossRef]

Hehl, K.

Kassam, S.

Koshevaya, S.

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

Lacis, A. A.

M. I. Mishchenko, A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167–179 (2000).
[CrossRef]

Lazarides, B.

J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Lei, X. Y.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

Lemarchand, F.

F. Lemarchand, H. Giovannini, A. Sentenac, “Interest of hybrid structures for thin-film design: multilayered subwavelength microgratings,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE3133, 58–64 (1997).

Lin, Z. F.

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Ma, H.

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Maure, S.

Maystre, D.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

D. Maystre, G. Tayeb, D. Felbacq, “Electromagnetic study of photonic band structures and Anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–165.

McPhedran, R. C.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Mishchenko, M. I.

M. I. Mishchenko, A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167–179 (2000).
[CrossRef]

Mullaney, P. F.

Neubert, J.

Nevière, M.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Onofri, F.

Papen, G. C.

Pelletier, E.

Petit, R.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Polaert, H.

H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Prasad, S.

S. Prasad, W. Guo, “Multiple-scattering approach to Mie scattering from a sphere of arbitrary size,” Opt. Commun. 136, 447–460 (1997).
[CrossRef]

Rahn, J. P.

Roche, P.

C. Amra, C. Grèzes-Besset, P. Roche, E. Pelletier, “Description of a scattering apparatus: application to the problems of characterization of opaque surfaces,” Appl. Opt. 28, 2723–2730 (1989).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Rother, T.

T. Rother, K. Schmidt, “The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries,” J. Quant. Spectrosc. Radiat. Transfer 55, 615–625 (1996).
[CrossRef]

Sanchez-Mondragon, J.

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

Schmidt, K.

T. Rother, K. Schmidt, “The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries,” J. Quant. Spectrosc. Radiat. Transfer 55, 615–625 (1996).
[CrossRef]

Scott, A. S.

K. J. Balkus, A. S. Scott, “Molecular sieve coatings on spherical substrates via pulsed laser deposition,” Microporous Mesoporous Mater. 34, 31–42 (2000).
[CrossRef]

Sentenac, A.

F. Lemarchand, H. Giovannini, A. Sentenac, “Interest of hybrid structures for thin-film design: multilayered subwavelength microgratings,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE3133, 58–64 (1997).

Sheng, P.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Sipe, J. E.

Tam, W. Y.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Tayeb, G.

D. Maystre, G. Tayeb, D. Felbacq, “Electromagnetic study of photonic band structures and Anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–165.

Vincent, P.

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

Wang, N.

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Wang, Z. L.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

Wen, W.

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Zhang, W. Y.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

Zheng, D.

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

Appl. Math. Comput.

M. I. Mishchenko, A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116, 167–179 (2000).
[CrossRef]

Appl. Opt.

Int. J. Mech. Sci.

W. Q. Chen, H. J. Ding, “Free vibration of multilayered spherically isotropic hollow spheres,” Int. J. Mech. Sci. 43, 667–680 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transfer

T. Rother, K. Schmidt, “The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries,” J. Quant. Spectrosc. Radiat. Transfer 55, 615–625 (1996).
[CrossRef]

Microporous Mesoporous Mater.

K. J. Balkus, A. S. Scott, “Molecular sieve coatings on spherical substrates via pulsed laser deposition,” Microporous Mesoporous Mater. 34, 31–42 (2000).
[CrossRef]

Opt. Commun.

G. Burlak, S. Koshevaya, J. Sanchez-Mondragon, V. Grimalsky, “Electromagnetic oscillations in a multilayer spherical stack,” Opt. Commun. 180, 49–58 (2000).
[CrossRef]

S. Prasad, W. Guo, “Multiple-scattering approach to Mie scattering from a sphere of arbitrary size,” Opt. Commun. 136, 447–460 (1997).
[CrossRef]

H. Polaert, G. Gréhan, G. Gouesbet, “Force and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
[CrossRef]

Phys. Rev. Lett.

W. Wen, N. Wang, H. Ma, Z. F. Lin, W. Y. Tam, C. T. Chan, P. Sheng, “Field induced structural transition in mesocrystallites,” Phys. Rev. Lett. 82, 4248–4251 (1999).
[CrossRef]

Physica B

C. T. Chan, W. Y. Zhang, Z. L. Wang, X. Y. Lei, D. Zheng, W. Y. Tam, P. Sheng, “Photonic band gaps from metallo-dielectric spheres,” Physica B 279, 150–154 (2000).
[CrossRef]

Thin Solid Films

J. P. Borgogno, B. Lazarides, P. Roche, “An improved method for the determination of the extinction coefficient of thin film materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Other

F. Lemarchand, H. Giovannini, A. Sentenac, “Interest of hybrid structures for thin-film design: multilayered subwavelength microgratings,” in Optical Thin Films V: New Developments, R. L. Hall, ed., Proc. SPIE3133, 58–64 (1997).

R. Petit, M. Cadilhac, D. Maystre, P. Vincent, M. Nevière, R. C. McPhedran, G. H. Derrick, L. C. Botten, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics, R. Petit, ed. (Springer-Verlag, Berlin, 1980).

D. Maystre, G. Tayeb, D. Felbacq, “Electromagnetic study of photonic band structures and Anderson localization,” in Microcavities and Photonic Bandgaps: Physics and Applications, J. G. Rarity, C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Planar multilayer or microcavity with a source in the (a) far field at infinity or (b) near field in its vicinity.

Fig. 2
Fig. 2

(a) Diffraction grating with privileged orders. (b) When the grating step is subwavelength, the unique zero order plays the role of specular reflection (see text). These components can be overcoated to fulfill new optical functions.

Fig. 3
Fig. 3

Schematic view of photonic crystals.

Fig. 4
Fig. 4

(a) Removal of multilayers to reduce them to optical powder (see text). (b) Overcoating of microspheres could provide specific optical powders.

Fig. 5
Fig. 5

Geometry of the vacuum chamber used to coat micro-objects in motion.

Fig. 6
Fig. 6

Nomarski picture (600 µm × 400 µm) of the metallic grid used during evaporation. Some microspheres remain on the grid.

Fig. 7
Fig. 7

Experimental setup used to validate the possibility of a uniform coating through the grid: (a) the glass is directly in contact with the grid and (b) the glass is 1 cm from the grid.

Fig. 8
Fig. 8

Nomarski image (600 µm × 400 µm) of the glass from the setup in Fig. 7(a).

Fig. 9
Fig. 9

Experimental setup for the measurement of spectral scattering.

Fig. 10
Fig. 10

Spectral scattering of the Lambertian sample measured with the setup in Fig. 9. The unity on the ordinate axis is the voltage measured directly with the experimental setup. Data were then calibrated with the Lambertian tabulated data, as shown in Eqs. (1–(3); see text.

Fig. 11
Fig. 11

Scatterometer for the measurement of ARS.

Fig. 12
Fig. 12

ARS measurements of an empty flask compared with a flask full of uncoated microspheres; λ = 633 nm.

Fig. 13
Fig. 13

Nomarski image (900 µm × 600 µm) of partially nickel-coated microspheres (150-µm diameter).

Fig. 14
Fig. 14

Nomarski image (900 µm × 600 µm) of totally nickel-coated microspheres (150-µm diameter).

Fig. 15
Fig. 15

ARS measurements of partially or totally metal-coated microspheres compared with ARS measurements of uncoated microspheres; λ = 633 nm.

Fig. 16
Fig. 16

ARS measurements of the deposition of a ten-layer coating (zinc sulfide–cryolite); λ = 633 nm.

Fig. 17
Fig. 17

Spectrophotometric measurement of a 17-layer mirror (zinc sulfide–cryolite) deposited on the monitoring glass.

Fig. 18
Fig. 18

Spectrophotometric measurements of spheres coated with the same multilayer mirror.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Lrefλ=1-Aλ/π,
Vrefλ=KλΦ0Lrefλcos θ ΔΩ,
Iθ, λ=L cos θ=Cθ, λVθ, λ,

Metrics