Abstract

Optical coatings with enhanced roughness offer promising prospects for ultrahydrophobic transparent surfaces with controlled scatter losses. Our approach links roughness characteristics with both wetting behavior and scattering. Experiments with rough oxide layers yielded surfaces with a high water contact angle.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolfram, R. Faust, Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, London, 1978), p. 213.
  2. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
    [CrossRef]
  3. K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
    [CrossRef]
  4. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
    [CrossRef]
  5. A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
    [CrossRef]
  6. K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
    [CrossRef]
  7. A. Duparré, J. Ferré-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining rms roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
    [CrossRef] [PubMed]
  8. C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
    [CrossRef]
  9. A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily ed., Vol. CR 72 of SPIE Critical Review Paper Series (SPIE, Bellingham, Wash., 1999), pp. 213–231.
  10. A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990).
  11. J. Ferré-Borrull, A. Duparré, E. Quesnel, “Roughness and light scattering of ion-beam-sputtered fluoride coatings for 193 nm,” Appl. Opt. 39, 5854–5864 (2000).
    [CrossRef]
  12. A. Duparré, “Light scattering of thin dielectric films”, in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC, Boca Raton, Fla., 1995), pp. 273–304.
  13. P. Bousquet, F. Flory, P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981).
    [CrossRef]
  14. P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
    [CrossRef]

2002 (1)

2000 (4)

J. Ferré-Borrull, A. Duparré, E. Quesnel, “Roughness and light scattering of ion-beam-sputtered fluoride coatings for 193 nm,” Appl. Opt. 39, 5854–5864 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

1999 (1)

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

1997 (1)

K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
[CrossRef]

1996 (1)

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

1993 (1)

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

1981 (1)

Adamson, A. W.

A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990).

Bennett, J. M.

Bousquet, P.

Duparré, A.

A. Duparré, J. Ferré-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining rms roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

J. Ferré-Borrull, A. Duparré, E. Quesnel, “Roughness and light scattering of ion-beam-sputtered fluoride coatings for 193 nm,” Appl. Opt. 39, 5854–5864 (2000).
[CrossRef]

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily ed., Vol. CR 72 of SPIE Critical Review Paper Series (SPIE, Bellingham, Wash., 1999), pp. 213–231.

A. Duparré, “Light scattering of thin dielectric films”, in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC, Boca Raton, Fla., 1995), pp. 273–304.

Faust, R.

E. Wolfram, R. Faust, Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, London, 1978), p. 213.

Ferré-Borrull, J.

Flory, F.

Fuchs, H.

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Fujishima, A.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

Gliech, S.

Hashimoto, K.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

Kappen, P.

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Katata, N.

K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
[CrossRef]

Minami, T.

K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
[CrossRef]

Miwa, M.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Nakajima, A.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

Nakayama, I.

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

Notni, G.

A. Duparré, J. Ferré-Borrull, S. Gliech, G. Notni, J. Steinert, J. M. Bennett, “Surface characterization techniques for determining rms roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily ed., Vol. CR 72 of SPIE Critical Review Paper Series (SPIE, Bellingham, Wash., 1999), pp. 213–231.

Ogawa, K.

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

Quesnel, E.

Reihs, K.

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Roche, P.

Ruppe, C.

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

Seidel, C.

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Soga, M.

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

Steinert, J.

Tadanaga, K.

K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
[CrossRef]

Takada, Y.

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

Voetz, M.

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Watanabe, T.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

Wolfram, E.

E. Wolfram, R. Faust, Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, London, 1978), p. 213.

Adv. Mater. (1)

A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Preparation of transparent superhydrophobic boehmite and silicia films by sublimation of aluminium acetylacetonate,” Adv. Mater. 11, 1365–1368 (1999).
[CrossRef]

Appl. Opt. (2)

J. Am. Ceram. Soc. (1)

K. Tadanaga, N. Katata, T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. Part 2 (1)

K. Ogawa, M. Soga, Y. Takada, I. Nakayama, “Development of a transparent and ultrahydrophobic glass plate,” Jpn. J. Appl. Phys. Part 2 32, L614–L615 (1993).
[CrossRef]

Langmuir (2)

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, “Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces,” Langmuir 16, 5754–5760 (2000).
[CrossRef]

Surf. Sci. (1)

P. Kappen, K. Reihs, C. Seidel, M. Voetz, H. Fuchs, “Overlayer thickness determination by anglar dependent x-ray photoelectron specroskopy (ADXPS) of rough surfaces with a spherical topography,” Surf. Sci. 465, 40–50 (2000).
[CrossRef]

Thin Solid Films (1)

C. Ruppe, A. Duparré, “Roughness analysis of optical films and substrates by atomic force microscopy,” Thin Solid Films 288, 8–13 (1996).
[CrossRef]

Other (4)

A. Duparré, G. Notni, “Multi-type surface and thin film characterization using light scattering, scanning force microscopy and white light interferometry,” in Optical Metrology, G. A. Al-Jumaily ed., Vol. CR 72 of SPIE Critical Review Paper Series (SPIE, Bellingham, Wash., 1999), pp. 213–231.

A. W. Adamson, Physical Chemistry of Surfaces, 5th ed. (Wiley, New York, 1990).

E. Wolfram, R. Faust, Wetting, Spreading and Adhesion, J. F. Padday, ed. (Academic, London, 1978), p. 213.

A. Duparré, “Light scattering of thin dielectric films”, in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties Series (CRC, Boca Raton, Fla., 1995), pp. 273–304.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Definition of the contact angle (CA).

Fig. 2
Fig. 2

Experimentally obtained relationship between the logarithmically averaged reduced amplitude I(β) and the water CA. The measurements refer to a number of different types of rough surface, overcoated with a gold film and a monolayer of n-decanethiol (intrinsic water CA = 110°).

Fig. 3
Fig. 3

AFM image of the surface structure of the rough ZrO2 layer deposited by electron-beam evaporation at a substrate temperature of 590 K.

Fig. 4
Fig. 4

PSD curves and CAs for ZrO2 layers deposited by electron-beam evaporation at various substrate temperatures. Upper curve, 590 K (same sample as in Fig. 3); lower curve, ambient temperature. The samples were overcoated with a thin sputtered gold film and a monolayer of n-decanethiol.

Fig. 5
Fig. 5

Total forward scattering (solid curve) and backscattering (dashed curve) of the ZrO2 layer, which delivers a CA of 143°. Scatter measurements were performed at 633 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

PSDf= limA1AAζ rexp-2πif·rdr2,
PSDf=12π02πPSDf, φdφ.
Af=2 π fF×fPSDffdf1/2.
Iβ=log f=-3 μm-1log f=3 μm-1β fdlog f.
dPSP0dΩ= i=0Nj=0N FiFj* PSDijf,
TS=2π 0π/2dPSP0dΩsin θdθs.

Metrics