Abstract

We provide a detailed analysis of the various problems connected with the development of tunable thin-film filters for wavelength-division multiplexing applications. We examine the relation between the change in layer thickness and the central wavelength shift for various configurations and point out the significance of the structure of the reflectors, the spacer thickness, and the location of the active layers. We describe and compare practical arrangements using either temperature or an electric field as the driving parameter.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, DiCon Fiberoptics, Inc. communication products page on motorized tunable bandpass filters at http://www.diconfiberoptics.com/products/index_measurement.htm .
  2. P. Baumeister, Optical Coating Technology, UCLA short Course, Library of Congress Catalog No. TS 517.2 B38 2000 (Library of Congress, Washington, D.C., 2001), Chap. 2.
  3. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993), Chap. 7.
  4. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [CrossRef] [PubMed]
  5. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 9, pp. 405–406.
  6. See the Schott telecom materials S7003 datasheet at http://us.schott.com/sgt/english/products/s7003.html .
  7. See Ioffe Physico-Technical Institute, physical properties of semiconductors, silicon properties at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/ .
  8. See the Ohara Corporation Homepage link to the Nex-C product page at http://www.ohara-inc.co.jp/ohara_e/ohara.htm .
  9. R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.
  10. S. Sakaguchi, S. Kubo, “Transmission characteristics of multilayer films composed of electro-optic and dielectric materials,” Opt. Commun. 170, 187–191 (1999).
    [CrossRef]
  11. K. Lewis, G. Smith, I. Mason, “Progress in the realization of frequency agile filters using nanoscopic polymer dispersed liquid crystals,” in Optical Interference Coatings, Postconference Digest, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

2002 (1)

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

1999 (1)

S. Sakaguchi, S. Kubo, “Transmission characteristics of multilayer films composed of electro-optic and dielectric materials,” Opt. Commun. 170, 187–191 (1999).
[CrossRef]

1995 (1)

Amra, C.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Baumeister, P.

P. Baumeister, Optical Coating Technology, UCLA short Course, Library of Congress Catalog No. TS 517.2 B38 2000 (Library of Congress, Washington, D.C., 2001), Chap. 2.

Bocquet, F.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993), Chap. 7.

Bozzo, S.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Cathelinaud, M.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Charai, A.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Dominici, C.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Kubo, S.

S. Sakaguchi, S. Kubo, “Transmission characteristics of multilayer films composed of electro-optic and dielectric materials,” Opt. Commun. 170, 187–191 (1999).
[CrossRef]

Labat, S.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Lemarchand, F.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Lequime, M.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Lewis, K.

K. Lewis, G. Smith, I. Mason, “Progress in the realization of frequency agile filters using nanoscopic polymer dispersed liquid crystals,” in Optical Interference Coatings, Postconference Digest, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 9, pp. 405–406.

Mason, I.

K. Lewis, G. Smith, I. Mason, “Progress in the realization of frequency agile filters using nanoscopic polymer dispersed liquid crystals,” in Optical Interference Coatings, Postconference Digest, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

Parmentier, R.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Sakaguchi, S.

S. Sakaguchi, S. Kubo, “Transmission characteristics of multilayer films composed of electro-optic and dielectric materials,” Opt. Commun. 170, 187–191 (1999).
[CrossRef]

Smith, G.

K. Lewis, G. Smith, I. Mason, “Progress in the realization of frequency agile filters using nanoscopic polymer dispersed liquid crystals,” in Optical Interference Coatings, Postconference Digest, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

Takashashi, H.

Thomas, O.

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993), Chap. 7.

Appl. Opt. (2)

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
[CrossRef] [PubMed]

R. Parmentier, F. Lemarchand, M. Cathelinaud, M. Lequime, C. Amra, S. Labat, S. Bozzo, F. Bocquet, A. Charai, O. Thomas, C. Dominici, “Study of piezoelectric tantalum pentoxide thin films for optical tunable applications,” Appl. Opt. 41, 0000–0000 (2002). OT 17995, same issue.

Opt. Commun. (1)

S. Sakaguchi, S. Kubo, “Transmission characteristics of multilayer films composed of electro-optic and dielectric materials,” Opt. Commun. 170, 187–191 (1999).
[CrossRef]

Other (8)

K. Lewis, G. Smith, I. Mason, “Progress in the realization of frequency agile filters using nanoscopic polymer dispersed liquid crystals,” in Optical Interference Coatings, Postconference Digest, Vol. 63 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001).

See, for example, DiCon Fiberoptics, Inc. communication products page on motorized tunable bandpass filters at http://www.diconfiberoptics.com/products/index_measurement.htm .

P. Baumeister, Optical Coating Technology, UCLA short Course, Library of Congress Catalog No. TS 517.2 B38 2000 (Library of Congress, Washington, D.C., 2001), Chap. 2.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1993), Chap. 7.

H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Macmillan, New York, 1986), Chap. 9, pp. 405–406.

See the Schott telecom materials S7003 datasheet at http://us.schott.com/sgt/english/products/s7003.html .

See Ioffe Physico-Technical Institute, physical properties of semiconductors, silicon properties at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/Si/ .

See the Ohara Corporation Homepage link to the Nex-C product page at http://www.ohara-inc.co.jp/ohara_e/ohara.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of a single-cavity filter: (a) Fabry Perot single-cavity filter, (b) structure 1 with the first dielectric mirror, (c) structure 2 with the second dielectric mirror. Note that the the spacer is the incident medium for structures 1 and 2.

Fig. 2
Fig. 2

Variation of the phase reflection coefficients with respect to the wavelength for various q values. Phase reflection coefficients δ1 and δ2 for (HL) q mirrors (structures 1 and 2 are defined in Fig. 1): boldface curve, q = 2; black curve, q = 4; lightface curves, q = 16. The refractive indices are n h = 2.1 and n l = 1.5. The incident medium is the high-index medium n 0 = 2.1. The index of the substrate medium is n s = 1 for structures 1 and n s = 1.45 for structures 2. The central wavelength is λ0 = 1.55 µm. The phase dispersion at λ = λ0 increases with the number of layers.

Fig. 3
Fig. 3

Variation of the spectral shift of a filter with respect to the thickness of the spacer layer. Transmittance versus wavelengths for several spacer thicknesses (H B)6/2pH/(H B)6 when t sp increases by 1%: solid curves, p = 1; short dashed curves p = 4; long dashed curves, p = 16. The central wavelength is λ0 = 1.55 µm. The relative spectral shift increases with number p.

Fig. 4
Fig. 4

Transmittance versus wavelength for a (HL)6 - 8H - (LH)6 Fabry-Perot cavity when the thickness of several layers is changed: boldface curve, starting design centered at λ0 = 1.55 µm; triangles, the thickness of the 12 low-index layers increased by 1%; circles, only the thickness of the spacer layer (8H) increased by 1%; diamond, the thickness of the 13 high-index layers increased by 1%; squares, all the thicknesses increased by 1%; the cavity is centered at λ0 + 1%; dashed curves, the thickness of the 13 high-index layers increased by 1%, whereas the thickness of the 12 low-index layers decreased by 1%.

Fig. 5
Fig. 5

Transmittance versus wavelength for a (HL)6 - 8H - (LH)6 Fabry-Perot single and triple cavity when the thickness of several layers changes: solid curve, starting design centered at λ0 = 1.55 µm; circles, only the thickness of the spacer layer (8H) increased by 1%; diamonds, the thickness of the 13 high-index layers increased by 1%.

Fig. 6
Fig. 6

Schematic view of a NBPF deposited on a piezoelectric substrate: T s , substrate thickness and T f , stack thickness.

Tables (1)

Tables Icon

Table 1 Filter Sensitivities

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

HLq-2pH - LHq
T=Tmax1+F sin2 ϕ,
F=4R1R21-R1R22, Tmax=T1T21-R1R22, ϕ=2πλ nhtsp +δ1+δ22,
ri=Riexp jδi.
λ=2nhtsp0p-δ1+δ22π,
λ0=2nhtsp0p
Δλλ0=κ Δntspntsp0,
κ=11-λ02πpδ1+δ2λ.
ΔL3L0=d33ε3,
ΔL2L0=d32ε3,
Δλελ0=ΔnεTfεn0Tf0,
n=NP+1-P.
L1=Tf1-νt2+t3E,
L2=L01+t2-νt3E,
L3=L01+t3-νt2E.
t2=E d32+νd331-ν2 ε,
t3=E d33+νd321-ν2 ε,
L1=Tf1-ν1-νd32+d33ε,
L2=L01+d32ε,
L3=L01+d33ε.
Vε=V01+1-2ν1-νd32+d33ε.
Pε=VVε=P011+1-2ν1-νd32+d33ε.
nε=1+P01+1-2ν1-νd32+d33εN0-1.
Δλε=λ01N01+N0-11+1-2ν1-νd32+d33ε×1-ν1-νd32+d33ε-1.

Metrics