Abstract

Theoretical analysis is made for thin-film-based, 200- and 100-GHz narrow bandpass filters with respect to the intensity response as well as to the chromatic dispersion. The results indicate that the narrower the passband, the higher the chromatic dispersion. The maximum chromatic dispersion appears at the edges of the 0.5-dB passband, owing to the fast change of the group delay in the region. The deviation of chromatic dispersion induced by manufacturing error is simulated. Effective-medium approximation layers are added to simulate the contribution of surface roughness and the mixture interfaces to the passband ripple as well as the chromatic dispersion. The simulations are compared with the experimental results. The measured chromatic dispersion matches the general trend of the theoretical calculation. The imperfect surface and layer mismatch induce additional ripples across the 0.5-dB passband. The maximum chromatic dispersion within a 0.5-dB passband is 20.7 and 54.9 ps/nm for 200- and 100-GHZ narrow bandpass filters, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
    [CrossRef]
  2. G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
    [CrossRef]
  3. C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18, 860–868 (2000).
    [CrossRef]
  4. A. Zöller, R. Götzelmann, K. Matl, D. Cushing, “Temperature-stable bandpass filters deposited with plasma ion-assisted deposition,” Appl. Opt. 35, 5609–5612 (1996).
    [CrossRef] [PubMed]
  5. P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
    [CrossRef]
  6. L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
    [CrossRef]
  7. S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
    [CrossRef]

2000 (2)

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18, 860–868 (2000).
[CrossRef]

1999 (1)

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

1998 (3)

P. Baumeister, “Bandpass filters for wavelength division multiplexing—modification of the spectral bandwidth,” Appl. Opt. 37, 6609–6614 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

1996 (1)

Baumeister, P.

Cardinaud, C.

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

Cushing, D.

Duparre, A.

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

Eggleton, B. J.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

Giles, C. R.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

Götzelmann, R.

Huter, M.

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

Jakobs, S.

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

Lenz, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

Madsen, C. K.

C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18, 860–868 (2000).
[CrossRef]

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

Matl, K.

Nykolak, G.

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

Peignon, M. C.

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

Pulker, H. K.

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

Rolland, L.

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

Slusher, R. E.

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

Vallee, C.

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

Zöller, A.

Appl. Opt. (2)

Appl. Surf. Sci. (1)

L. Rolland, C. Vallee, M. C. Peignon, C. Cardinaud, “Roughness and chemistry of silicon and polysilicon surface etched in high-density plasma: XPS, AFM and ellipsometry analysis,” Appl. Surf. Sci. 164, 147–155 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron. 34, 1390–1402 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Lenz, B. J. Eggleton, C. K. Madsen, C. R. Giles, G. Nykolak, “Optimal dispersion of optical filters for WDM systems,” IEEE Photon. Technol. Lett. 10, 567–569 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Thin Solid Films (1)

S. Jakobs, A. Duparre, M. Huter, H. K. Pulker, “Surface roughness characterization of smooth optical films deposited by ion plating,” Thin Solid Films, 351, 141–145 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated intensity response and phase response of a 200- and a 100-GHz NBPF with four cavities. Each cavity contains two quarter-wave stacks spaced by one half-wave layer, and each stack contains alternative layers of SiO2 and Ta2O5 (a) IL spectrum and (b) transmitted CD.

Fig. 2
Fig. 2

Calculated intensity response and phase response of a 100-GHz NBPF with different cavities. (a) Transmitted IL and (b) CD.

Fig. 3
Fig. 3

Measured results of CD, relative GD, and transmitted IL along with the calculated CD for a 200-GHz NBPF.

Fig. 4
Fig. 4

Results of measured CD and relative GD for a 100-GHz NBPF along with the calculated IL and CD based on the filter theoretical design.

Tables (2)

Tables Icon

Table 1 0.5-dB Passband IL Ripple and Maximum Change of Transmitted CD with Different Layer Mismatch for a 100-GHz NBPF

Tables Icon

Table 2 0.5-dB Passband IL Ripple and Maximum Change of Transmitted CD for a 100-GHz NBPF with Different Surface and Interface Roughness

Metrics