Abstract

Theoretical analysis is made for thin-film-based, 200- and 100-GHz narrow bandpass filters with respect to the intensity response as well as to the chromatic dispersion. The results indicate that the narrower the passband, the higher the chromatic dispersion. The maximum chromatic dispersion appears at the edges of the 0.5-dB passband, owing to the fast change of the group delay in the region. The deviation of chromatic dispersion induced by manufacturing error is simulated. Effective-medium approximation layers are added to simulate the contribution of surface roughness and the mixture interfaces to the passband ripple as well as the chromatic dispersion. The simulations are compared with the experimental results. The measured chromatic dispersion matches the general trend of the theoretical calculation. The imperfect surface and layer mismatch induce additional ripples across the 0.5-dB passband. The maximum chromatic dispersion within a 0.5-dB passband is 20.7 and 54.9 ps/nm for 200- and 100-GHZ narrow bandpass filters, respectively.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription