Abstract

Certain spaceborne telescope designs require that dielectric-coated lenses be exposed to the energetic electrons and protons associated with the space environment. Test coupons that were exposed to a simulated space environment showed extensive pitting as a result of dielectric breakdown. A typical pit was 50–100 µm at the surface and extended to the substrate material, in which a 10-µm-diameter melt region was found. Pitting was not observed on similar samples that had also been overcoated with a transparent conductive thin film. Measurement of the bidirectional reflectance distribution transfer function showed that pitting caused a fivefold to tenfold increase in the scattering of visible light.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992).
    [CrossRef]
  2. J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
    [CrossRef]
  3. J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959).
    [CrossRef]
  4. W. K. Stuckey, M. J. Meshishnek, “Solar ultraviolet and space radiation effects on inflatable materials,” in Gossamer Spacecraft: Membrane/Inflatable Structures Technology for Space Applications, C. H. Jenkins, ed., Vol. 191 of AIAA Progress Astronautics Aeronautics Series (AIAA, Reston, Va., 2001), pp. 303–320.
  5. J. I. Vette, “The AE-8 trapped electron model environment,” National Space Science Data Center Report, NSSDC/WDC-A-RS-91-24, NASA-TM-107820 (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).
  6. C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).
  7. S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).
  8. M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).
  9. M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).
  10. J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).
  11. J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

1992

A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992).
[CrossRef]

1959

J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959).
[CrossRef]

1958

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

André, B.

J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

Bevis, R. P.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

Dijon, J.

M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).

J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).

J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

Frank, L. A.

J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959).
[CrossRef]

Garrec, P.

M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).

Garrett, H. B.

C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).

Hue, J.

J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).

Ignat, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).

Korth, A.

A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992).
[CrossRef]

Leplan, H.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).

Ludwig, G. H.

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

Lyan, P.

M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).

McIlwain, C. E.

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

Meshishnek, M. J.

W. K. Stuckey, M. J. Meshishnek, “Solar ultraviolet and space radiation effects on inflatable materials,” in Gossamer Spacecraft: Membrane/Inflatable Structures Technology for Space Applications, C. H. Jenkins, ed., Vol. 191 of AIAA Progress Astronautics Aeronautics Series (AIAA, Reston, Va., 2001), pp. 303–320.

Poulingue, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).

J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).

M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).

Purvis, C. K.

C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).

Ravel, G.

J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

Ray, E. C.

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

Stevens, N. J.

C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).

Stolz, C. J.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

Stuckey, W. K.

W. K. Stuckey, M. J. Meshishnek, “Solar ultraviolet and space radiation effects on inflatable materials,” in Gossamer Spacecraft: Membrane/Inflatable Structures Technology for Space Applications, C. H. Jenkins, ed., Vol. 191 of AIAA Progress Astronautics Aeronautics Series (AIAA, Reston, Va., 2001), pp. 303–320.

Vampola, A. L.

A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992).
[CrossRef]

Van Allen, J. A.

J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959).
[CrossRef]

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

Vette, J. I.

J. I. Vette, “The AE-8 trapped electron model environment,” National Space Science Data Center Report, NSSDC/WDC-A-RS-91-24, NASA-TM-107820 (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).

von Gunten, M. K.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

Weakley, S. C.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

Whittlesey, A. C.

C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).

Wu, Z. L.

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

Geophys. Res. Lett.

A. L. Vampola, A. Korth, “Electron drift echos in the inner magnetosphere,” Geophys. Res. Lett. 19, 625–628 (1992).
[CrossRef]

Jet Propul.

J. A. Van Allen, G. H. Ludwig, E. C. Ray, C. E. McIlwain, “Observation of high intensity radiation by satellites 1958 alpha and gamma,” Jet Propul. 28, 588–592 (1958).
[CrossRef]

Nature (London)

J. A. Van Allen, L. A. Frank, “Radiation around the Earth to a radial distance of 107, 400 km,” Nature (London) 183, 430–434 (1959).
[CrossRef]

Other

W. K. Stuckey, M. J. Meshishnek, “Solar ultraviolet and space radiation effects on inflatable materials,” in Gossamer Spacecraft: Membrane/Inflatable Structures Technology for Space Applications, C. H. Jenkins, ed., Vol. 191 of AIAA Progress Astronautics Aeronautics Series (AIAA, Reston, Va., 2001), pp. 303–320.

J. I. Vette, “The AE-8 trapped electron model environment,” National Space Science Data Center Report, NSSDC/WDC-A-RS-91-24, NASA-TM-107820 (NASA Goddard Space Flight Center, Greenbelt, Md., 1991).

C. K. Purvis, H. B. Garrett, A. C. Whittlesey, N. J. Stevens, “Design guidelines for assessing and controlling spacecraft charging effects,” NASA Tech. Paper 2361 (NASA, Goddard Space Flight Center, Greenbelt, Md., 1984).

S. C. Weakley, C. J. Stolz, Z. L. Wu, R. P. Bevis, M. K. von Gunten, “Role of starting material composition in interfacial damage morphology of hafnia silica multiplayer coatings,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 137–142 (1998).

M. Poulingue, J. Dijon, P. Garrec, P. Lyan, “1.06-µm laser irradiation on high-reflection coatings inside a scanning electron microscope,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 188–195 (1998).

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, “New approach for the critical size of the nodular defects: the mechanical connection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 370–380 (1998).

J. Dijon, M. Poulingue, J. Hue, “Thermomechanical model of mirror laser damage at 1.06 µm: I. Nodule ejection,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 387–397 (1998).

J. Dijon, G. Ravel, B. André, “Thermomechanical model of mirror laser damage at 1.06 µm: II. Flat bottom pits formation,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, eds., Proc. SPIE3578, 398–407 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Smoothed electron depth-dose profile for 6 months in orbit. A rad is defined as 100 ergs of energy absorbed per gram.

Fig. 2
Fig. 2

Optical micrograph of a typical defect on sample 12.

Fig. 3
Fig. 3

Dark-field optical micrograph of faint Lichtenburg figures on sample 8. See arrows.

Fig. 4
Fig. 4

Optical image of an irradiated 2.54-cm-diameter sample. The black spots are pits.

Fig. 5
Fig. 5

Optical micrograph of the dog-leg feature on sample 7.

Fig. 6
Fig. 6

Optical micrograph of a pit on sample 9.

Fig. 7
Fig. 7

FE-SEM of the dog-leg feature.

Fig. 8
Fig. 8

Typical pit on sample 7.

Fig. 9
Fig. 9

Magnification of a typical pit on sample 7.

Fig. 10
Fig. 10

Focused-ion-beam image of cut cross section of the dog leg viewed at a 60-deg angle.

Fig. 11
Fig. 11

Conventional SEM micrograph of a divot found on sample 21.

Fig. 12
Fig. 12

Site of a discharge that lacked the energy to remove a divot from the pit.

Fig. 13
Fig. 13

BRDF of several samples, illustrating the increase in scatter as a result of pitting.

Fig. 14
Fig. 14

Micrograph of the dog leg after attempts to charge the perimeter with the FE-SEM electron beam. The dark areas indicate less charge.

Tables (2)

Tables Icon

Table 1 Exposure Rates and Fluences

Tables Icon

Table 2 Summary of Coating Sample Examination

Metrics