Abstract

A pump-and-probe setup that uses a totally reflecting prism coupler is presented. Its electromagnetic and thermal models are described. To our knowledge, the first results are given concerning the measurement of thermal properties of thin films.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ristau, J. Ebert, “Development of a thermographic calorimeter,” Appl. Opt. 25, 4571–4578 (1986).
    [CrossRef]
  2. C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.
  3. J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
    [CrossRef]
  4. A. H. Guenther, J. K. McIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988).
    [CrossRef]
  5. P. K. Tien, R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60, 1325–1337 (1970).
    [CrossRef]
  6. S. Monneret, S. Tisserand, F. Flory, H. Rigneault, “Light-induced refractive-index modifications in dielectric thin films: experimental determination of relaxation time and amplitude,” Appl. Opt. 35, 5013–5020 (1996).
    [CrossRef] [PubMed]
  7. F. Flory, “Guided wave techniques for the characterization of optical coatings,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Marcel Dekker, New York, 1995), pp. 393–454.
  8. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  9. S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
    [CrossRef]
  10. F. Flory, D. Endelema, E. Pelletier, I. Hodkinson, “Anisotropy in thin films. Modelization and measurement of guided and nonguided optical properties. Application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
    [CrossRef] [PubMed]
  11. E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).
  12. D. P. Almond, P. M. Patel, Photothermal Science and Techniques, in Physics and Its Applications, E. R. Dobbs, S. B. Palmer, series ed. (Chapman & Hall, London, 1996).

2002 (1)

E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).

2000 (1)

S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

1996 (1)

1993 (1)

1989 (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

1988 (1)

A. H. Guenther, J. K. McIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988).
[CrossRef]

1986 (1)

1973 (1)

1970 (1)

Almond, D. P.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques, in Physics and Its Applications, E. R. Dobbs, S. B. Palmer, series ed. (Chapman & Hall, London, 1996).

Amsden, C. A.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.

Diakomihalis, D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Drouard, E.

E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).

Ebert, J.

Endelema, D.

Escoubas, L.

E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).

Flory, F.

E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).

S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

S. Monneret, S. Tisserand, F. Flory, H. Rigneault, “Light-induced refractive-index modifications in dielectric thin films: experimental determination of relaxation time and amplitude,” Appl. Opt. 35, 5013–5020 (1996).
[CrossRef] [PubMed]

F. Flory, D. Endelema, E. Pelletier, I. Hodkinson, “Anisotropy in thin films. Modelization and measurement of guided and nonguided optical properties. Application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
[CrossRef] [PubMed]

F. Flory, “Guided wave techniques for the characterization of optical coatings,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Marcel Dekker, New York, 1995), pp. 393–454.

Gilman, S. E.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.

Guenther, A. H.

A. H. Guenther, J. K. McIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988).
[CrossRef]

Hodkinson, I.

Huguet-Chantôme, P.

E. Drouard, P. Huguet-Chantôme, L. Escoubas, F. Flory, “Guided-wave ∂n/∂T measurement for narrow-bandpass filters,” Appl. Opt. 41, XXX–XXX (2002).

S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

Jacobs, S. D.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.

Jolly, M. R.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Lambropoulos, J. C.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

McIver, J. K.

A. H. Guenther, J. K. McIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988).
[CrossRef]

Monneret, S.

S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

S. Monneret, S. Tisserand, F. Flory, H. Rigneault, “Light-induced refractive-index modifications in dielectric thin films: experimental determination of relaxation time and amplitude,” Appl. Opt. 35, 5013–5020 (1996).
[CrossRef] [PubMed]

Patel, P. M.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques, in Physics and Its Applications, E. R. Dobbs, S. B. Palmer, series ed. (Chapman & Hall, London, 1996).

Pelletier, E.

Rigneault, H.

Ristau, D.

Sinicropi, M. J.

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Tien, P. K.

Tisserand, S.

Torge, R.

Torok, J. S.

C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.

Ulrich, R.

Appl. Opt. (5)

J. Appl. Phys. (1)

J. C. Lambropoulos, M. R. Jolly, C. A. Amsden, S. E. Gilman, M. J. Sinicropi, D. Diakomihalis, S. D. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Monneret, P. Huguet-Chantôme, F. Flory, “m-lines technique: prism coupling measurement and discussion of accuracy for homogeous waveguides,” J. Opt. A: Pure Appl. Opt. 2, 188–195 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Thin Solid Films (1)

A. H. Guenther, J. K. McIver, “The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films,” Thin Solid Films 163, 203–214 (1988).
[CrossRef]

Other (3)

F. Flory, “Guided wave techniques for the characterization of optical coatings,” in Thin Films for Optical Systems, F. Flory, ed., Vol. 49 of Optical Engineering Series (Marcel Dekker, New York, 1995), pp. 393–454.

C. A. Amsden, S. E. Gilman, S. D. Jacobs, J. S. Torok, “Measurement of the thermal conductivity of dielectric thin films with a thermal comparator,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 78–81.

D. P. Almond, P. M. Patel, Photothermal Science and Techniques, in Physics and Its Applications, E. R. Dobbs, S. B. Palmer, series ed. (Chapman & Hall, London, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical modification of an m line’s intensity profile versus the thickness of the air layer between the prism and the film.

Fig. 2
Fig. 2

Typical modification of an m line’s profile that is due to a refractive-index modification.

Fig. 3
Fig. 3

Definition of the axes.

Fig. 4
Fig. 4

Calculated example of temperature distribution in the prism coupler. Thickness of the thin film, 533 nm; thickness of the air layer, 94 nm; rutile prism; silica substrate; modulation frequency, 1 kHz; half-pump beam waist, 30 µm; thin film’s thermal conductivity, 0.1 W m-1K-1; and diffusivity, 1 × 10-7 m2 s-1.

Fig. 5
Fig. 5

Temperature profile versus y in the film (corresponds to the temperature distribution of Fig. 4).

Fig. 6
Fig. 6

Calculated evolution of the half-width at 1/e 2 of the film’s temperature profile versus the modulation frequency. The conditions are the same as for Fig. 4. Dotted line, the half-pump beam waist.

Fig. 7
Fig. 7

Sketch of the experimental setup.

Fig. 8
Fig. 8

Position of the photodiode on the probe m line’s profile.

Fig. 9
Fig. 9

Measured example of the film’s temperature profile. Dotted curve, the intensity profile of the pump beam. Sample, 533 nm of TiO2 deposited by ion-assisted deposition on a fused-silica substrate; rutile prism; modulation frequency, 200 Hz; half-pump beam waist, 30 µm; pump-guided mode, TE1; probe-guided mode, TM2; air layer thickness, 94 nm.

Fig. 10
Fig. 10

Measured evolution of the half-width at 1/e 2 of the film’s temperature profile versus the modulation frequency. Dotted line, the half-pump beam waist. The conditions are the same as for Fig. 9.

Fig. 11
Fig. 11

Measured evolution of the half-width at 1/e 2 of the film’s temperature profile versus the modulation frequency for three different samples. Dotted line, the half-pump beam waist (approximately 30 µm). Diamonds, same conditions as for Fig. 9. Squares, 970 nm of Ta2O5 deposited by ion plating on a BK7 substrate; SrTiO3 prism; half-pump beam waist, 30 µm; pump-guided mode, TE5; probe-guided mode, TM2; air layer thickness, 111 nm. Circles, 570 nm of Ta2O5 deposited by ion plating on a fused-silica substrate; SrTiO3 prism; half-pump beam waist, 32 µm; pump-guided mode, TE2; probe-guided mode, TM0; air layer thickness, 114 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔTpy, z+αp2Tpy, z=0, ΔTay, z+αa2Tay, z=0, ΔTfy, z+αf2Tfy, z=-Sy, z/bf, ΔTsy, z+αs2Tsy, z=0,
2Tpz2σ, z+χp2Tpσ, z=0, 2Taz2σ, z+χa2Taσ, z=0, 2Tfz2σ, z+χf2Tfσ, z=-fσS0z/bf, 2Tsz2σ, z+χs2Tsσ, z=0,
Tpσ, z=Ap+ expjχpz+Ap- exp-jχpz, Taσ, z=Aa+ expjχaz+Aa- exp-jχaz, Tfσ, z=Af+ expjχfz+Af- exp-jχfz,-Fσexpjχfz2jχfbfoz S0zexp-jχfzdz-Fσexp-jχfz2jχfbfztf S0z×expjχfzdz, Tsσ, z=As+ expjχsz+As- exp-jχsz,

Metrics