Abstract

We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2|Ti|Ag| TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 Ω/□ (where □ stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Finley, “Heat treatment and bending of low-E glass,” Thin Solid Films 351, 264–273 (1999).
    [CrossRef]
  2. J. J. Finley, “The evolution of solar infrared reflective glazing in automobiles,” in Forty-Fourth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2001), pp. 193–203.
  3. M. Ohring, The Materials Science of Thin Films (Academic, Boston, Mass., 1992), pp. 536–537.
  4. J. D. Rancourt, Optical Thin Films User’s Handbook (McGraw-Hill, New York, 1987), pp. 121–123.
  5. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), p. 424.
  6. P. H. Berning, “Principles of design of architectural coatings,” Appl. Opt. 24, 4127–4141 (1983).
    [CrossRef]
  7. H. J. Gläser, Large Area Glass Coating, (Von Ardenne, Dresden, Germany, 2000), pp. 206, 220–226.
  8. J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
    [CrossRef]
  9. E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
    [CrossRef]
  10. E. Ando, M. Miyazaki, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films 351, 308–312 (1999).
    [CrossRef]
  11. R. Hermann, G. Bräuer, “DC and RF-magnetron sputtering,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds. (CRC, Boca Raton, Fla., 1995), Chap. 6, pp. 154, 174–175.
  12. H. Ohsaki, Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films 351, 1–7 (1999).
    [CrossRef]
  13. H. A. Macleod, “Thin film optical materials,” in Thin Film Technology Handbook, A. R. Elshabini, F. D. Barlow, eds. (McGraw-Hill, New York, 1998), Chap. 8, pp. 21–22.
  14. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001), pp. 13–85, 583–585.
  15. A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).
  16. A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
    [CrossRef]
  17. O. Treichel, V. Kirchhoff, G. Bräuer, “The influence of barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in Forty-Third Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2000), pp. 121–126.
  18. D. W. Linch, W. R. Hunter, M. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–368.
  19. H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
    [CrossRef]

2000

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

1999

E. Ando, M. Miyazaki, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films 351, 308–312 (1999).
[CrossRef]

H. Ohsaki, Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films 351, 1–7 (1999).
[CrossRef]

J. J. Finley, “Heat treatment and bending of low-E glass,” Thin Solid Films 351, 264–273 (1999).
[CrossRef]

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

1996

A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).

A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
[CrossRef]

1983

P. H. Berning, “Principles of design of architectural coatings,” Appl. Opt. 24, 4127–4141 (1983).
[CrossRef]

Ando, E.

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

E. Ando, M. Miyazaki, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films 351, 308–312 (1999).
[CrossRef]

Anton, R.

A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
[CrossRef]

Aomine, N.

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

Berning, P. H.

P. H. Berning, “Principles of design of architectural coatings,” Appl. Opt. 24, 4127–4141 (1983).
[CrossRef]

Bräuer, G.

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

R. Hermann, G. Bräuer, “DC and RF-magnetron sputtering,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds. (CRC, Boca Raton, Fla., 1995), Chap. 6, pp. 154, 174–175.

O. Treichel, V. Kirchhoff, G. Bräuer, “The influence of barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in Forty-Third Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2000), pp. 121–126.

Finley, J. J.

J. J. Finley, “Heat treatment and bending of low-E glass,” Thin Solid Films 351, 264–273 (1999).
[CrossRef]

J. J. Finley, “The evolution of solar infrared reflective glazing in automobiles,” in Forty-Fourth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2001), pp. 193–203.

Friedrich, I.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Gläser, H. J.

H. J. Gläser, Large Area Glass Coating, (Von Ardenne, Dresden, Germany, 2000), pp. 206, 220–226.

Grosse, P.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Herlitze, L.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Hermann, R.

R. Hermann, G. Bräuer, “DC and RF-magnetron sputtering,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds. (CRC, Boca Raton, Fla., 1995), Chap. 6, pp. 154, 174–175.

Hunter, W. R.

D. W. Linch, W. R. Hunter, M. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–368.

Kirchhoff, V.

O. Treichel, V. Kirchhoff, G. Bräuer, “The influence of barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in Forty-Third Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2000), pp. 121–126.

Klöppel, A.

A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).

Kokubu, Y.

H. Ohsaki, Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films 351, 1–7 (1999).
[CrossRef]

Linch, D. W.

D. W. Linch, W. R. Hunter, M. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–368.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001), pp. 13–85, 583–585.

H. A. Macleod, “Thin film optical materials,” in Thin Film Technology Handbook, A. R. Elshabini, F. D. Barlow, eds. (McGraw-Hill, New York, 1998), Chap. 8, pp. 21–22.

Meyer, B.

A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).

Miyazaki, M.

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

E. Ando, M. Miyazaki, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films 351, 308–312 (1999).
[CrossRef]

Müggenberg, T.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Offermann, J.

A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
[CrossRef]

Ohring, M.

M. Ohring, The Materials Science of Thin Films (Academic, Boston, Mass., 1992), pp. 536–537.

Ohsaki, H.

H. Ohsaki, Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films 351, 1–7 (1999).
[CrossRef]

Pulker, H. K.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), p. 424.

Rancourt, J. D.

J. D. Rancourt, Optical Thin Films User’s Handbook (McGraw-Hill, New York, 1987), pp. 121–123.

Ribarsky, M. W.

D. W. Linch, W. R. Hunter, M. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–368.

Ruske, M.

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

Schilling, H.

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

Schmidt, A. A.

A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
[CrossRef]

Suzuki, S.

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

Szczyrbowski, J.

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

Tada, M.

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

Treichel, O.

O. Treichel, V. Kirchhoff, G. Bräuer, “The influence of barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in Forty-Third Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2000), pp. 121–126.

Trube, J.

A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).

Weis, H.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Wutig, M.

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Zmelty, A.

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

Appl. Opt.

P. H. Berning, “Principles of design of architectural coatings,” Appl. Opt. 24, 4127–4141 (1983).
[CrossRef]

Thin Solid Films

J. Szczyrbowski, G. Bräuer, M. Ruske, H. Schilling, A. Zmelty, “New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers,” Thin Solid Films 351, 254–259 (1999).
[CrossRef]

J. J. Finley, “Heat treatment and bending of low-E glass,” Thin Solid Films 351, 264–273 (1999).
[CrossRef]

E. Ando, M. Miyazaki, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films 351, 308–312 (1999).
[CrossRef]

H. Ohsaki, Y. Kokubu, “Global market and technology trends on coated glass for architectural, automotive and display applications,” Thin Solid Films 351, 1–7 (1999).
[CrossRef]

A. Klöppel, B. Meyer, J. Trube, “Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems,” Thin Solid Films 392, 105–107 (1996).

A. A. Schmidt, J. Offermann, R. Anton, “The role of neutral oxygen in the oxidation of Ag films,” Thin Solid Films 281–282, 105–107 (1996).
[CrossRef]

H. Weis, T. Müggenberg, P. Grosse, L. Herlitze, I. Friedrich, M. Wutig, “Advanced characterization tools for thin films in low-E systems,” Thin Solid Films 351, 184–189 (1999).
[CrossRef]

Vacuum

E. Ando, S. Suzuki, N. Aomine, M. Miyazaki, M. Tada, “Sputtered silver-based low-emissivity coatings with high moisture durability,” Vacuum 59, 792–799 (2000).
[CrossRef]

Other

H. J. Gläser, Large Area Glass Coating, (Von Ardenne, Dresden, Germany, 2000), pp. 206, 220–226.

J. J. Finley, “The evolution of solar infrared reflective glazing in automobiles,” in Forty-Fourth Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2001), pp. 193–203.

M. Ohring, The Materials Science of Thin Films (Academic, Boston, Mass., 1992), pp. 536–537.

J. D. Rancourt, Optical Thin Films User’s Handbook (McGraw-Hill, New York, 1987), pp. 121–123.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1984), p. 424.

O. Treichel, V. Kirchhoff, G. Bräuer, “The influence of barrier layer on the mechanical properties of IR-reflecting (low-E) multilayer systems on glass,” in Forty-Third Annual Technical Conference Proceedings (Society of Vacuum Coaters, Albuquerque, 2000), pp. 121–126.

D. W. Linch, W. R. Hunter, M. W. Ribarsky, “Comments on the optical constants of metals and an introduction to the data for several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–368.

H. A. Macleod, “Thin film optical materials,” in Thin Film Technology Handbook, A. R. Elshabini, F. D. Barlow, eds. (McGraw-Hill, New York, 1998), Chap. 8, pp. 21–22.

H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol, UK, 2001), pp. 13–85, 583–585.

R. Hermann, G. Bräuer, “DC and RF-magnetron sputtering,” in Handbook of Optical Properties, R. E. Hummel, K. H. Guenther, eds. (CRC, Boca Raton, Fla., 1995), Chap. 6, pp. 154, 174–175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Transmittance and (b) absorptance of Ag, Al, Au, and Cu metal films at 13-nm thickness as a function of wavelength. The transmittance of the Ag film is high in the visible region (380–650 nm), and the absorptance is the lowest.

Fig. 2
Fig. 2

(a) Transmittance and (b) absorptance of a Ag thin film as the thickness varies from 5 to 30 nm. The transmittance in the visible decreases rapidly as the thickness increases, whereas the absorptance does not vary much in the visible and the NIR.

Fig. 3
Fig. 3

(a) Simulated transmittance of [air|dielectric film|Ag(13 nm)|glass] as a function of physical thickness of three dielectric films; TiO2 (n = 2.52 at 550 nm), solid curve; Y2O3 (n = 1.79), dashed curve; and SiO2 (n = 1.46), dotted curve. The horizontal dashed-dotted line at 56.5% is the transmittance of 13-nm Ag film upon glass, i.e., [air|Ag(13 nm)|glass]. The higher refractive-index film shows higher transmittance at a smaller thickness, i.e., 24 nm of TiO2 film. (b) Simulated transmittance and reflectance of [air|TiO2(24 nm)|Ag(13 nm)|glass] (dashed curve) and [air|TiO2(24 nm)|Ag(13 nm)|TiO2(24 nm)|glass] (solid curve) as a function of wavelength. A TiO2 layer inserted between the Ag film and the substrate broadens the transmission band in the visible.

Fig. 4
Fig. 4

(a) Admittance of {air|TiO2(24 nm)|Ti(1 nm)|Ag(17 nm)|TiO2(24 nm)|[TiO2(24 nm)| Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)]2|glass(1 mm)|air} and (b) simulated transmittance and reflectance of {air|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)] P |glass(1 nm)|air} (dotted and dashed-dotted curves) and {air|TiO2(24 nm)|Ti(1 nm)|Ag(17 nm)|TiO2(24 nm)|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)]2|glass(1 mm)|air} (solid curve). A simple repetition of the basic structure results in lower transmittance in the NIR and a steeper cutoff slope. The 17-nm Ag film at the third period flattens the antireflection band in the visible.

Fig. 5
Fig. 5

Dispersion of the optical constants of (a) Ag (10.5-nm thickness), (b) TiO2 (37.36-nm), and (c) Ti (0.85-nm) films measured by VASE; the optical constants of bulk Ag and Ti metals from a handbook18 are also drawn for comparison.

Fig. 6
Fig. 6

Optical microscope surface images of the basic structure (a) without a Ti layer, [air|TiO2(24 nm)|Ag(13 nm)|TiO2(24 nm)|glass]; and (b) with a Ti layer, [air|TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)]. The surface figure of the configuration without a Ti layer shows many spots, whereas the surface with a Ti layer is clean.

Fig. 7
Fig. 7

Simulated and measured spectra of (a), (b) {air|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)] P |glass(1 mm)|air} and (c) {air|TiO2(24 nm)|Ti(1 nm)|Ag(17 nm)|TiO2(24 nm)|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)]2|glass(1 nm)|air}.

Fig. 8
Fig. 8

SEM images of the surfaces of Ag films at (a) 8-, (b) 12-, and (c) 20-nm thickness. Note that the microstructure of Ag film is discontinuous at 8 nm but continuous at 12 and 20 nm.

Fig. 9
Fig. 9

SEM images of (a) the surface and (b) a cross section of the basic structure without a Ti layer, and (c) a cross section of three periods with Ti layers of {air|TiO2(24 nm)|Ti(1 nm)|Ag(17 nm)|TiO2(24 nm)|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)]2|glass}. Many agglomerated Ag disks are shown in the basic structure without a Ti layer in (a). The thick Ag disk and thin TiO2 layers are shown at the left in (b), and the Ag layer is not shown between two TiO2 layers at the right of (b). In (c) three Ag layers and four TiO2 layers are clearly shown; they are due to the very thin Ti blocking layers.

Fig. 10
Fig. 10

Auger depth profiles at 2-kV Ar+ bombardment and an etching rate of 3.3 nm/min of SiO2 film: (a) without a Ti layer, [air|TiO2(24 nm) |Ag(13 nm)|TiO2(24 nm)|glass]; (b) with a Ti layer, [air|TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)|TiO2(24 nm)|glass]; and (c) three-period structure, {air|TiO2(24 nm)|Ti(1 nm)|Ag(17 nm)|TiO2(24 nm)|[TiO2(24 nm)|Ti(1 nm)|Ag(13 nm)| TiO2(24 nm)]2|glass}. The Ag peak in the basic structure with a Ti layer is high and clear, whereas the peak in the basic structure without a Ti layer is very small. In the three periods the height of the Ag peak is decreasing and the width is broadening slightly as the sputtering time (depth) increases. It seems that the changes in the height and the width of the Ag peak may be due to the O2 diffusion and heat load of the plasma in the sputtering process.

Fig. 11
Fig. 11

Sheet resistance as a function of period. As the period increases, the sheet resistance (R ) decreases from 3.5 to 0.9 Ω/□ owing to an increase in the effective thickness of the Ag films in the conductive NIR cutoff filter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

air|TiO224 nm|Ti1 nm|Ag17 nm|TiO224 nm| TiO224 nm|Ti1 nm|Ag13 nm|TiO224 nm2|glass.
ε=0.0129×R-6.7×10-5×R2,

Metrics