Abstract

The properties of a thin film of a given material depend on the film’s real structure. The real structure is defined as the link between a thin film’s deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, “Struktur und Optik aufgedampfter Metallschichten,” (“Structure and Optics of evaporated metal films”), Ann. Phys. (Leipzig) 31, 245–260 (1938).
  2. D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  3. K. H. Guenther, D. J. Smith, L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE678, 2–11 (1986).
  4. H. A. Macleod, Performance-limiting factors in optical coatings, in Los Angeles Conference on Optics ’81, D. H. Liebenberg, ed., Proc. SPIE288, 580–586 (1981).
  5. H. A. Macleod, “Microstructure of optical thin films,” in Optical Thin Films, R. I. Seddon, ed., Proc. SPIE325, 21–29 (1982).
  6. M. Ohring, The Material Science of Thin Films (Academic, San Diego, Calif., 1992).
  7. H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999).
  8. J. Venables, Introduction to Surfaces and Thin Film Processes (Cambridge U. Press, Cambridge, UK, 2000).
  9. E. Bauer, “Wachstum dünner Schicten,” Z. Kristallogr. 110, 372–394 (1958).
    [CrossRef]
  10. I. Markov, R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
    [CrossRef]
  11. B. A. Movchan, A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).
  12. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666–672 (1974).
    [CrossRef]
  13. J. A. Thornton, “Structure and topography of sputtered coatings,” Annu. Rev. Mater. Sci. 7, 239–260 (1977).
    [CrossRef]
  14. J. A. Thornton, “Study of the microstructure of thick sputtered coatings,” Thin Solid Films 40, 335–342 (1977).
    [CrossRef]
  15. J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
    [CrossRef]
  16. R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
    [CrossRef]
  17. R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4/3, 490–495 (1986).
    [CrossRef]
  18. C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
    [CrossRef]
  19. P. B. Barna, M. Adamik, “Growth mechanisms of polycrystalline thin films,” in Science and Technology of Thin Films, in F. C. Matacotta, G. Ottaviani, eds. (World Scientific, Singapore, 1995), pp. 1–28.
  20. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
    [CrossRef]
  21. I. Hodgkinson, Q. Wu, Birefringent Thin Film Polarizing Elements (World Scientific, Singapore, 1999).
  22. I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
    [CrossRef]
  23. P. S. Kirejew, Physik der Halbleiter (Akademie-Verlag, Berlin, 1974), Chap. 2, p. 470.
  24. A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties (CRC Press, Boca Raton, Fla., 1995), pp. 273–304.
  25. C. von Fragstein, H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
    [CrossRef]
  26. U. Kreibig, M. Vollmer, eds., Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  27. H. Monard, “Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium,” Thin Solid Films 310, 265–273 (1997).
    [CrossRef]
  28. O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
    [CrossRef]
  29. L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
    [CrossRef]
  30. R. J. Hill, S. J. Nadel, Coated Glass Applications and Markets (BOC Coating Technology, Fairfield, Calif., 1999).
  31. H. J. Gläser, Dünnfilmtechnologie auf Flachglas (Verlag Karl Hofmann, Schorndorf, Germany, 1999).
  32. W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127/128, 796–808 (1997).
    [CrossRef]
  33. R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
    [CrossRef]
  34. S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).
  35. T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).
    [CrossRef] [PubMed]

2002

2000

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

1997

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127/128, 796–808 (1997).
[CrossRef]

H. Monard, “Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium,” Thin Solid Films 310, 265–273 (1997).
[CrossRef]

1986

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4/3, 490–495 (1986).
[CrossRef]

1984

C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
[CrossRef]

R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

1982

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

1977

J. A. Thornton, “Structure and topography of sputtered coatings,” Annu. Rev. Mater. Sci. 7, 239–260 (1977).
[CrossRef]

J. A. Thornton, “Study of the microstructure of thick sputtered coatings,” Thin Solid Films 40, 335–342 (1977).
[CrossRef]

1976

I. Markov, R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
[CrossRef]

1974

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666–672 (1974).
[CrossRef]

1969

B. A. Movchan, A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).

1958

E. Bauer, “Wachstum dünner Schicten,” Z. Kristallogr. 110, 372–394 (1958).
[CrossRef]

C. von Fragstein, H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
[CrossRef]

1938

G. Hass, “Struktur und Optik aufgedampfter Metallschichten,” (“Structure and Optics of evaporated metal films”), Ann. Phys. (Leipzig) 31, 245–260 (1938).

Adamik, M.

P. B. Barna, M. Adamik, “Growth mechanisms of polycrystalline thin films,” in Science and Technology of Thin Films, in F. C. Matacotta, G. Ottaviani, eds. (World Scientific, Singapore, 1995), pp. 1–28.

Aspnes, D. E.

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Bangjun, L.

K. H. Guenther, D. J. Smith, L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE678, 2–11 (1986).

Barna, P. B.

P. B. Barna, M. Adamik, “Growth mechanisms of polycrystalline thin films,” in Science and Technology of Thin Films, in F. C. Matacotta, G. Ottaviani, eds. (World Scientific, Singapore, 1995), pp. 1–28.

Bauer, E.

E. Bauer, “Wachstum dünner Schicten,” Z. Kristallogr. 110, 372–394 (1958).
[CrossRef]

Bouchier, D.

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

Buschendorf, D.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Dannenberg, R.

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

Demchishin, A. V.

B. A. Movchan, A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).

Dresser, B. J.

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

Duparré, A.

A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties (CRC Press, Boca Raton, Fla., 1995), pp. 273–304.

Eggert, S.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Ensinger, W.

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127/128, 796–808 (1997).
[CrossRef]

Feigl, T.

T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).
[CrossRef] [PubMed]

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).

Giri, A. P.

R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Gläser, H. J.

H. J. Gläser, Dünnfilmtechnologie auf Flachglas (Verlag Karl Hofmann, Schorndorf, Germany, 1999).

Gorelik, T.

Grammes, R.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Grovenor, C. R. M.

C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
[CrossRef]

Groza, J. R.

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

Guenther, K. H.

K. H. Guenther, D. J. Smith, L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE678, 2–11 (1986).

Hass, G.

G. Hass, “Struktur und Optik aufgedampfter Metallschichten,” (“Structure and Optics of evaporated metal films”), Ann. Phys. (Leipzig) 31, 245–260 (1938).

Hentzell, H. T. G.

C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
[CrossRef]

Hill, R. J.

R. J. Hill, S. J. Nadel, Coated Glass Applications and Markets (BOC Coating Technology, Fairfield, Calif., 1999).

Hodgkinson, I.

I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

I. Hodgkinson, Q. Wu, Birefringent Thin Film Polarizing Elements (World Scientific, Singapore, 1999).

Kaischew, R.

I. Markov, R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
[CrossRef]

Kaiser, N.

T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).
[CrossRef] [PubMed]

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).

Kaiser, U.

Kirejew, P. S.

P. S. Kirejew, Physik der Halbleiter (Akademie-Verlag, Berlin, 1974), Chap. 2, p. 470.

Kuhlmann, T.

T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).
[CrossRef] [PubMed]

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).

Lakhtakia, A.

I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

Lebedev, A. N.

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Performance-limiting factors in optical coatings, in Los Angeles Conference on Optics ’81, D. H. Liebenberg, ed., Proc. SPIE288, 580–586 (1981).

H. A. Macleod, “Microstructure of optical thin films,” in Optical Thin Films, R. I. Seddon, ed., Proc. SPIE325, 21–29 (1982).

Markov, I.

I. Markov, R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
[CrossRef]

Mergel, D.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Messier, R.

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4/3, 490–495 (1986).
[CrossRef]

R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Monard, H.

H. Monard, “Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium,” Thin Solid Films 310, 265–273 (1997).
[CrossRef]

Movchan, B. A.

B. A. Movchan, A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).

Nadel, S. J.

R. J. Hill, S. J. Nadel, Coated Glass Applications and Markets (BOC Coating Technology, Fairfield, Calif., 1999).

Ohring, M.

M. Ohring, The Material Science of Thin Films (Academic, San Diego, Calif., 1992).

Pulker, H. K.

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999).

Richter, W.

Römer, H.

C. von Fragstein, H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
[CrossRef]

Roy, R. A.

R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

Samset, B.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Schreiber, M.

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

Smith, D. A.

C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
[CrossRef]

Smith, D. J.

K. H. Guenther, D. J. Smith, L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE678, 2–11 (1986).

Stach, E. A.

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

Stenzel, O.

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

Thornton, J. A.

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

J. A. Thornton, “Structure and topography of sputtered coatings,” Annu. Rev. Mater. Sci. 7, 239–260 (1977).
[CrossRef]

J. A. Thornton, “Study of the microstructure of thick sputtered coatings,” Thin Solid Films 40, 335–342 (1977).
[CrossRef]

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666–672 (1974).
[CrossRef]

Venables, J.

J. Venables, Introduction to Surfaces and Thin Film Processes (Cambridge U. Press, Cambridge, UK, 2000).

Vinh, L. T.

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

von Fragstein, C.

C. von Fragstein, H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
[CrossRef]

Wu, Q.

I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

I. Hodgkinson, Q. Wu, Birefringent Thin Film Polarizing Elements (World Scientific, Singapore, 1999).

Yam, V.

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

Yulin, S.

T. Kuhlmann, S. Yulin, T. Feigl, N. Kaiser, T. Gorelik, U. Kaiser, W. Richter, “Chromium-scandium mirrors for the nitrogen Kα-line in the water window,” Appl. Opt. 41, 2048–2052 (2002).
[CrossRef] [PubMed]

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).

Zahn, D. R. T.

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

Zeng, Y.

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

Acta Metall.

C. R. M. Grovenor, H. T. G. Hentzell, D. A. Smith, “The development of grain structure during growth of metallic films,” Acta Metall. 32, 773–781 (1984).
[CrossRef]

Ann. Phys. (Leipzig)

G. Hass, “Struktur und Optik aufgedampfter Metallschichten,” (“Structure and Optics of evaporated metal films”), Ann. Phys. (Leipzig) 31, 245–260 (1938).

Annu. Rev. Mater. Sci.

J. A. Thornton, “Structure and topography of sputtered coatings,” Annu. Rev. Mater. Sci. 7, 239–260 (1977).
[CrossRef]

Appl. Opt.

J. Vac. Sci. Technol.

J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666–672 (1974).
[CrossRef]

J. Vac. Sci. Technol. A

J. A. Thornton, “The microstructure of sputter-deposited coatings,” J. Vac. Sci. Technol. A 4, 3059–3065 (1986).
[CrossRef]

R. Messier, A. P. Giri, R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984).
[CrossRef]

R. Messier, “Toward quantification of thin film morphology,” J. Vac. Sci. Technol. A 4/3, 490–495 (1986).
[CrossRef]

Krist. Tech.

I. Markov, R. Kaischew, “Einfluss von Substratinhomogenitäten auf die Kinetik der heterogenen Keimbildung,” Krist. Tech. 11, 685–692 (1976).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

W. Ensinger, “Low energy ion assist during deposition—an effective tool for controlling thin film microstructure,” Nucl. Instrum. Methods Phys. Res. B 127/128, 796–808 (1997).
[CrossRef]

Opt. Eng.

I. Hodgkinson, A. Lakhtakia, Q. Wu, “Experimental realization of sculptured-thin-film polarization-discriminatory light-handedness inverters,” Opt. Eng. 39, 2831–2834 (2000).
[CrossRef]

Phys. Met. Metallogr.

B. A. Movchan, A. V. Demchishin, “Rost i struktura tonkich tverdotelnych plenok,” Phys. Met. Metallogr. 28, 83–91 (1969).

Thin Solid Films

J. A. Thornton, “Study of the microstructure of thick sputtered coatings,” Thin Solid Films 40, 335–342 (1977).
[CrossRef]

D. E. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

R. Dannenberg, E. A. Stach, J. R. Groza, B. J. Dresser, “In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films,” Thin Solid Films 370, 54–62 (2000).
[CrossRef]

H. Monard, “Optical properties of silver, gold and aluminium ultra thin granular films evaporated on oxidized aluminium,” Thin Solid Films 310, 265–273 (1997).
[CrossRef]

O. Stenzel, A. N. Lebedev, M. Schreiber, D. R. T. Zahn, “Simulation of linear optical losses of absorbing heterogeneous thin solid films,” Thin Solid Films 372, 200–208 (2000).
[CrossRef]

L. T. Vinh, V. Yam, Y. Zeng, D. Bouchier, “Nucleation and growth of self-assembled Ge/Si (001) quantum dots in single and stacked layers,” Thin Solid Films 380, 2–9 (2000).
[CrossRef]

Z. Kristallogr.

E. Bauer, “Wachstum dünner Schicten,” Z. Kristallogr. 110, 372–394 (1958).
[CrossRef]

Z. Phys.

C. von Fragstein, H. Römer, “Über die Anomalie der optischen Konstanten,” Z. Phys. 151, 54–71 (1958).
[CrossRef]

Other

U. Kreibig, M. Vollmer, eds., Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

P. S. Kirejew, Physik der Halbleiter (Akademie-Verlag, Berlin, 1974), Chap. 2, p. 470.

A. Duparré, “Light scattering of thin dielectric films,” in Thin Films for Optical Coatings, R. E. Hummel, K. H. Guenther, eds., Vol. 1 of Handbook of Optical Properties (CRC Press, Boca Raton, Fla., 1995), pp. 273–304.

I. Hodgkinson, Q. Wu, Birefringent Thin Film Polarizing Elements (World Scientific, Singapore, 1999).

P. B. Barna, M. Adamik, “Growth mechanisms of polycrystalline thin films,” in Science and Technology of Thin Films, in F. C. Matacotta, G. Ottaviani, eds. (World Scientific, Singapore, 1995), pp. 1–28.

R. J. Hill, S. J. Nadel, Coated Glass Applications and Markets (BOC Coating Technology, Fairfield, Calif., 1999).

H. J. Gläser, Dünnfilmtechnologie auf Flachglas (Verlag Karl Hofmann, Schorndorf, Germany, 1999).

S. Yulin, T. Feigl, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” in Emerging Lithographic Technologies, E. A. Dabisz, ed., Proc. SPIE4343, 607–614 (2001).

K. H. Guenther, D. J. Smith, L. Bangjun, “Structure and related properties of thin film optical coatings,” in Optical Thin Films II: New Developments, R. I. Seddon, ed., Proc. SPIE678, 2–11 (1986).

H. A. Macleod, Performance-limiting factors in optical coatings, in Los Angeles Conference on Optics ’81, D. H. Liebenberg, ed., Proc. SPIE288, 580–586 (1981).

H. A. Macleod, “Microstructure of optical thin films,” in Optical Thin Films, R. I. Seddon, ed., Proc. SPIE325, 21–29 (1982).

M. Ohring, The Material Science of Thin Films (Academic, San Diego, Calif., 1992).

H. K. Pulker, Coatings on Glass (Elsevier, Amsterdam, 1999).

J. Venables, Introduction to Surfaces and Thin Film Processes (Cambridge U. Press, Cambridge, UK, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left, ideal single-crystalline substrate coated with ideal single-crystalline films. Incoming light with intensity I 0 is split into reflected and transmitted parts I R and I T , respectively. Conservation of energy is given by I 0 = I R + I T . Right, real substrate with real coatings. Part of incoming intensity I 0 is absorbed (I A ) or scattered (I S ). Conservation of energy is given by I 0 = I R + I T + I A + I S .

Fig. 2
Fig. 2

Factors that control the properties of thin films.

Fig. 3
Fig. 3

TEM micrographs of antimony film formation (nucleation, growth of nuclei, coalescence, channels, holes, homogeneous film). Here (as is special for Sb) at percolation an amorphous-crystalline phase transition (change of contrast) takes place.

Fig. 4
Fig. 4

Initial states of film growth (after Ref. 9). Θ, substrate surface coverage in monolayers (ML).

Fig. 5
Fig. 5

Wetting angle φ of a liquid nucleus on a substrate is described by Young’s equation: γB = γ* + γ A cos φ, where γ B is the surface energy of substrate, γ A is the surface energy of film material, and γ* is the interface energy film-substrate.

Fig. 6
Fig. 6

Structure zone models (after Movchan,11 Thornton,12 Messier et al.,16 and Grovenor et al.18).

Fig. 7
Fig. 7

Basic and real-structure zone models for low, medium, and high impurity concentrations (after Barna19).

Fig. 8
Fig. 8

Growth of a metal film, starting from islands to continuous transparent to nontransparent films.

Fig. 9
Fig. 9

Cross-sectional transmission electron microscopy picture of Cr-Sc multilayer mirrors with period spacing d = 1.57 nm (left) and d = 3.17 nm (right).34

Tables (1)

Tables Icon

Table 1 Rate of Absorption Values to Defect Concentration in Dielectric Thin Films

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S=p/pe,
R=p/2πmKT1/2,
β=σND.

Metrics