Abstract

Measurements are presented of the experimental filters submitted to the first optical thin-film manufacturing problem posed in conjunction with the Topical Meeting on Optical Interference Coatings, in which the object was to produce multilayers with spectral transmittance and reflectance curves that were as close as possible to the target values that were specified in the 400- to 600-nm spectral region. No limit was set on the overall thickness of the solutions or the number of layers used in their construction. The participants were free to use the coating materials of their choice. Six different groups submitted a total of 11 different filters for evaluation. Three different physical vapor deposition processes were used for the manufacture of the coatings: magnetron sputtering, ion-beam sputtering, and plasma-ion-assisted, electron-beam gun evaporation. The solutions ranged in metric thickness from 758 to 4226 nm and consisted of between 8 and 27 layers. For all but two of the samples submitted, the average rms departure of the measured transmittances and reflectances from the target values in the spectral region of interest was between 0.98% and 1.55%.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium IR optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
    [Crossref] [PubMed]
  2. A. J. Thelen, R. Langfield, “Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems,” K. Günther, ed. Proc. SPIE1782, 551–601 (1992).
  3. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
    [Crossref] [PubMed]
  4. P. Baumeister, “Evaluation of the solutions for two design problems presented at the 1998 Optical Interference Coatings Conference,” Appl. Opt. 39, 2230–2234 (2000).
    [Crossref]
  5. A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.
  6. J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
    [Crossref] [PubMed]
  7. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
    [Crossref]
  8. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982 (1979).
    [Crossref] [PubMed]
  9. L. Li, Y.-H. Yen, “Wideband monitoring and measurement system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
    [Crossref] [PubMed]
  10. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
    [Crossref] [PubMed]
  11. M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
    [Crossref]
  12. B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
    [Crossref]
  13. K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).
  14. A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.
  15. P. Y. Barnes, E. A. Early, A. C. Parr, “Spectral reflectance,”Special Publication 250-48 (National Institute of Standards and TechnologyGaithersburg, MD, 1998).
  16. B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [Crossref] [PubMed]
  17. B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
    [Crossref]
  18. B. Szyszka, S. Jäger, “Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,” J. Non-Cryst. Solids 218, 74–80 (1997).
    [Crossref]
  19. S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
    [Crossref]
  20. M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
    [Crossref]
  21. J. A. Dobrowolski, Stephen Browning, “Manufacturing problem,” in Digest of Optical Interference Coatings (Optical Society of America, Washington, D.C., 2001), pp. MC1-1 to MC1-2.

2000 (3)

1999 (1)

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

1998 (2)

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

1997 (1)

B. Szyszka, S. Jäger, “Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,” J. Non-Cryst. Solids 218, 74–80 (1997).
[Crossref]

1996 (1)

1993 (1)

1992 (1)

1989 (1)

1988 (1)

1979 (1)

1978 (1)

1976 (1)

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[Crossref]

Aguilera, J.

Aguilera, J. A.

Akiyama, T.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Barnes, P. Y.

P. Y. Barnes, E. A. Early, A. C. Parr, “Spectral reflectance,”Special Publication 250-48 (National Institute of Standards and TechnologyGaithersburg, MD, 1998).

Baumeister, P.

Bloom, A.

Bräuer, G.

M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
[Crossref]

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

Brauneck, U.

A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.

Browning, Stephen

J. A. Dobrowolski, Stephen Browning, “Manufacturing problem,” in Digest of Optical Interference Coatings (Optical Society of America, Washington, D.C., 2001), pp. MC1-1 to MC1-2.

Clarke, G.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Coursen, D.

Dobrowolski, J. A.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[Crossref] [PubMed]

J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium IR optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
[Crossref] [PubMed]

J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
[Crossref] [PubMed]

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[Crossref]

J. A. Dobrowolski, Stephen Browning, “Manufacturing problem,” in Digest of Optical Interference Coatings (Optical Society of America, Washington, D.C., 2001), pp. MC1-1 to MC1-2.

Early, E. A.

P. Y. Barnes, E. A. Early, A. C. Parr, “Spectral reflectance,”Special Publication 250-48 (National Institute of Standards and TechnologyGaithersburg, MD, 1998).

Goldstein, F. T.

Groß, T.

K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).

Gustafson, D. E.

Holm, C.

Howe, L.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Jäger, S.

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

B. Szyszka, S. Jäger, “Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,” J. Non-Cryst. Solids 218, 74–80 (1997).
[Crossref]

Kemp, R. A.

Kikuchi, K.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Kochikov, I. V.

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

Langfield, R.

A. J. Thelen, R. Langfield, “Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems,” K. Günther, ed. Proc. SPIE1782, 551–601 (1992).

Lappschies, M.

K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).

Li, L.

Lowe, D.

Malkome, N.

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Malkomes, N.

M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
[Crossref]

Matsumoto, A.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Matthée, T.

M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
[Crossref]

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Oliver, J. B.

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

Osborne, N.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Parr, A. C.

P. Y. Barnes, E. A. Early, A. C. Parr, “Spectral reflectance,”Special Publication 250-48 (National Institute of Standards and TechnologyGaithersburg, MD, 1998).

Ranger, M.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Richter, U.

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Ristau, D.

K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).

Smith, D. J.

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

Song, Y.

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Städler, T.

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Starke, K.

K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).

Sullivan, B. T.

Szczyrbowski, J.

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

Szyszka, B.

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

B. Szyszka, S. Jäger, “Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,” J. Non-Cryst. Solids 218, 74–80 (1997).
[Crossref]

Thelen, A.

A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
[Crossref] [PubMed]

A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.

Thelen, A. J.

A. J. Thelen, R. Langfield, “Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems,” K. Günther, ed. Proc. SPIE1782, 551–601 (1992).

Tikhonravov, A.

A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

Tilsch, M.

A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.

Trubetskov, M. K.

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

Vergöhl, M.

M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
[Crossref]

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Yen, Y.-H.

Appl. Opt. (9)

J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, R. A. Kemp, “Antireflection coatings for germanium IR optics: a comparison of numerical design methods,” Appl. Opt. 27, 2832–2840 (1988).
[Crossref] [PubMed]

A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
[Crossref] [PubMed]

P. Baumeister, “Evaluation of the solutions for two design problems presented at the 1998 Optical Interference Coatings Conference,” Appl. Opt. 39, 2230–2234 (2000).
[Crossref]

C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18, 1978–1982 (1979).
[Crossref] [PubMed]

L. Li, Y.-H. Yen, “Wideband monitoring and measurement system for optical coatings,” Appl. Opt. 28, 2889–2894 (1989).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360 (1993).
[Crossref] [PubMed]

B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
[Crossref]

J. A. Dobrowolski, D. Lowe, “Optical thin film synthesis program based on the use of Fourier transforms,” Appl. Opt. 17, 3039–3050 (1978).
[Crossref] [PubMed]

B. T. Sullivan, J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

B. Szyszka, S. Jäger, “Optical and electrical properties of doped zinc oxide films prepared by ac reactive magnetron sputtering,” J. Non-Cryst. Solids 218, 74–80 (1997).
[Crossref]

Surf. Coat. Technol. (1)

S. Jäger, B. Szyszka, J. Szczyrbowski, G. Bräuer, “Comparison of transparent conductive oxide thin films prepared by a.c. and d.c. reactive magnetron sputtering,” Surf. Coat. Technol. 98, 1304–1314 (1998).
[Crossref]

Thin Solid Films (3)

M. Vergöhl, N. Malkomes, T. Matthée, G. Bräuer, “Real time control of reactive magnetron-sputter deposited optical filters by in situ spectroscopic ellipsometry,” Thin Solid Films 377–378, 43–47 (2000).
[Crossref]

J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34, 313–321 (1976).
[Crossref]

M. Vergöhl, N. Malkome, T. Städler, T. Matthée, U. Richter, “Ex situ and in situ spectroscopic ellipsometry of mf and dc-sputtered TiO2 and SiO2 films for process control,” Thin Solid Films 351, 42–47 (1999).
[Crossref]

Vacuum (1)

B. T. Sullivan, J. A. Dobrowolski, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, L. Howe, A. Matsumoto, Y. Song, K. Kikuchi, “Manufacture of complex multilayer filters using an automated deposition system,” Vacuum 51, 647–654 (1998).
[Crossref]

Other (6)

K. Starke, T. Groβ, M. Lappschies, D. Ristau, “Rapid prototyping of optical thin film filters,” in Optical and Infrared Thin Films,” M. J. Fulton, ed., Proc. SPIE4094, 83–92 (2000).

A. Tikhonravov, M. K. Trubetskov, I. V. Kochikov, J. B. Oliver, D. J. Smith, “On-line characterization and reoptimization of electron-beam evaporated coatings,” in Digest of the Annual Meeting (Optical Society of America, Washington, D. C., 2000), pp. 111.

P. Y. Barnes, E. A. Early, A. C. Parr, “Spectral reflectance,”Special Publication 250-48 (National Institute of Standards and TechnologyGaithersburg, MD, 1998).

A. Thelen, A. Tikhonravov, M. Tilsch, U. Brauneck, “Results of Optical Interference Coatings 2001 Meeting Design Contest,” in Digest of Optical Interference Coatings, (Optical Society of America, Washington, D.C., 2001), pp. TuC1-1 to TuC1-3.

A. J. Thelen, R. Langfield, “Coating design contest: antireflection coating for lenses to be used with normal and infrared photographic film,” in Thin Films for Optical Systems,” K. Günther, ed. Proc. SPIE1782, 551–601 (1992).

J. A. Dobrowolski, Stephen Browning, “Manufacturing problem,” in Digest of Optical Interference Coatings (Optical Society of America, Washington, D.C., 2001), pp. MC1-1 to MC1-2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mountain range in the Canadian Rockies and its reflection in Bow Lake provide the target transmittances T D and reflectances R D for the manufacturing problem. (Photograph by Douglas Leighton, from his book The Canadian Rockies, published by Altitude Publishing Ltd., Canmore, Canada. Reproduced with permission of the copyright owners.)

Fig. 2
Fig. 2

Effect of total metric thickness and number of layers on the calculated performance of solutions. In the first column, the target values are compared with the calculated transmittances and reflectances of the systems whose refractive-index profiles are depicted in the second column.

Fig. 3
Fig. 3

Sensitivity of the performance of the solutions depicted in Fig. 2 to 1% and 1-nm random thickness errors of the individual layers are shown in the first and second columns, respectively.

Fig. 4
Fig. 4

Each row presents information about one sample submitted to the exercise. The first column compares the 0° spectral transmittances measured by the participants with those obtained at NIST and ODA. In the second column the 7° measurements of T and R of the samples are compared with the target curves. The merit function value based on the ODA data is given. The refractive-index profiles of the various solutions are plotted in the third column. Listed are also the number of layers N of which the systems are composed, and the total metric thickness Σ(d) of the systems.

Fig. 5
Fig. 5

Typical thickness nonuniformities of the submitted multilayer systems. (a) Nonuniformity normally associated with stationary or slowly rotating substrates. (b) Nonuniformity associated with rapidly rotating substrates.

Fig. 6
Fig. 6

Calculated, measured, and shifted merit functions for the submitted multilayer systems plotted as a function of the overall metric thickness. For any one system, the calculated and measured merit functions have the lowest and the highest values. The shifted merit function has an intermediate value, or it coincides with the measured merit function.

Tables (3)

Tables Icon

Table 1 Specifications of the Manufacturing Problem Wavelength (nm)a

Tables Icon

Table 2 Participants in the Manufacturing Problema

Tables Icon

Table 3 Summary of the Results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

MF= 11010.666 i=1101TiD-TiM0.012+0.333 i=1101RiD-RiM0.0121/2,
Aav= 126i=1261.0-TiM-RiM0.0121/2,
ΔT0-T7=1101i=1101TiC0-TiC70.0121/2.
ΔTp-Ts=1101i=1101Tip-Tis0.0121/2.

Metrics