Abstract

Measured fluorescence from single-particle clusters of dye-doped polystyrene microspheres, dried nonspherical particles of tryptophan, and single polystyrene microspheres is enhanced in the backward direction (180° from the incident laser). This enhancement (a factor of 2–3 compared to 90°), which can be interpreted as a consequence of the reciprocity principle, increases with the particle refractive index.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Kratohvil, M.-P. Lee, M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
    [CrossRef] [PubMed]
  2. E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular distribution of fluorescence from monodispersed particles,” Appl. Opt. 17, 1980–1982 (1978).
    [CrossRef]
  3. M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1685 (1978).
    [CrossRef]
  4. M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
    [CrossRef] [PubMed]
  5. S. Druger, P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983).
    [CrossRef] [PubMed]
  6. N. Velesco, G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt. 38, 1046–1052 (1999).
    [CrossRef]
  7. S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
    [CrossRef] [PubMed]
  8. R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), p. 118.
  9. M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1999), p. 381.
  10. S. C. Hill, G. Videen, J. D. Pendleton, “Reciprocity method for obtaining the far fields generated by a source inside or near a microparticle,” J. Opt. Soc. Am. B 14, 2522–2529 (1997).
    [CrossRef]
  11. J. A. Lock, “Semiclassical scattering of an electric dipole source inside a spherical particle,” J. Opt. Soc. Am. A 18, 3085–3097 (2001).
    [CrossRef]
  12. K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
    [CrossRef]
  13. R. N. Berglund, B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
    [CrossRef]
  14. J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
    [CrossRef]
  15. S. Holler, J. C. Auger, B. Stout, Y. L. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
    [CrossRef]
  16. H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976).
    [CrossRef]
  17. S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996).
    [CrossRef] [PubMed]
  18. G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
    [CrossRef] [PubMed]
  19. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
    [CrossRef]
  20. Y.-L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
    [CrossRef]
  21. P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
    [CrossRef] [PubMed]
  22. S. C. Hill, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Collection of fluorescence from single molecules in microspheres: effects of illumination geometry,” Appl. Opt. 36, 4425–4437 (1997).
    [CrossRef] [PubMed]
  23. S. C. Hill, M. D. Barnes, N. Lermer, W. B. Whitten, J. M. Ramsey, “Simulation of single-molecule photocount statistics in microdroplets,” Anal. Chem. 70, 2964–2971 (1998).
    [CrossRef]

2001 (1)

2000 (2)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

S. Holler, J. C. Auger, B. Stout, Y. L. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

1999 (3)

1998 (2)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
[CrossRef]

S. C. Hill, M. D. Barnes, N. Lermer, W. B. Whitten, J. M. Ramsey, “Simulation of single-molecule photocount statistics in microdroplets,” Anal. Chem. 70, 2964–2971 (1998).
[CrossRef]

1997 (4)

1996 (1)

1983 (1)

1982 (1)

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

1978 (3)

1976 (1)

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976).
[CrossRef]

1973 (1)

R. N. Berglund, B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

Auger, J. C.

Barnes, M. D.

Benner, R. E.

Berglund, R. N.

R. N. Berglund, B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1999), p. 381.

Bottiger, J. R.

Boutou, V.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Bronk, B. V.

Brunsting, A.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Chang, R. K.

Chew, H.

Cooke, D. D.

Copeland, R. A.

Deluca, P. J.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
[CrossRef]

Druger, S.

Eversole, J. D.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Faris, G. W.

Fenn, J. B.

Gray, J. W.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Hairston, P. P.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Hargis, P. J.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Harrington, R. F.

R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), p. 118.

Hill, S. C.

Ho, J.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

Hsu, P.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Kerker, M.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

M. Kerker, P. J. McNulty, M. Sculley, H. Chew, D. D. Cooke, “Raman and fluorescent scattering by molecules embedded in small particles: numerical results for incoherent optical processes,” J. Opt. Soc. Am. 68, 1676–1685 (1978).
[CrossRef]

J. P. Kratohvil, M.-P. Lee, M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
[CrossRef] [PubMed]

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976).
[CrossRef]

Kratohvil, J. P.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

J. P. Kratohvil, M.-P. Lee, M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
[CrossRef] [PubMed]

Langlois, R. G.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Lee, E.-H.

Lee, M.-P.

Lermer, N.

S. C. Hill, M. D. Barnes, N. Lermer, W. B. Whitten, J. M. Ramsey, “Simulation of single-molecule photocount statistics in microdroplets,” Anal. Chem. 70, 2964–2971 (1998).
[CrossRef]

Liu, B. Y. H.

R. N. Berglund, B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

Lock, J. A.

McNulty, P. J.

Mortelmans, K.

Niles, S.

Pan, Y. L.

Pan, Y.-L.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Y.-L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24, 116–118 (1999).
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Quant, F. R.

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

Rader, D. J.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Ramsey, J. M.

Ramstein, S.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Saleheen, H. I.

Schmitt, R. L.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Schroder, K. L.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Schweiger, G.

Sculley, M.

Seaver, M.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Shokair, I. R.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Stout, B.

Stuebing, E. W.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
[CrossRef]

Van Dilla, M. A.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Vanreenaen, D. R.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
[CrossRef]

Velesco, N.

Videen, G.

Wang, D. S.

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Whitten, W. B.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1999), p. 381.

Wolf, J.-P.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Yu, J.

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Aerosol Sci. Technol. (1)

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30, 174–185 (1999).
[CrossRef]

Anal. Chem. (1)

S. C. Hill, M. D. Barnes, N. Lermer, W. B. Whitten, J. M. Ramsey, “Simulation of single-molecule photocount statistics in microdroplets,” Anal. Chem. 70, 2964–2971 (1998).
[CrossRef]

Appl. Opt. (8)

S. C. Hill, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Collection of fluorescence from single molecules in microspheres: effects of illumination geometry,” Appl. Opt. 36, 4425–4437 (1997).
[CrossRef] [PubMed]

S. Druger, P. J. McNulty, “Radiation patterns of fluorescence from molecules embedded in small particles: general case,” Appl. Opt. 22, 75–82 (1983).
[CrossRef] [PubMed]

N. Velesco, G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt. 38, 1046–1052 (1999).
[CrossRef]

J. P. Kratohvil, M.-P. Lee, M. Kerker, “Angular distribution of fluorescence from small particles,” Appl. Opt. 17, 1978–1980 (1978).
[CrossRef] [PubMed]

E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Chang, “Angular distribution of fluorescence from monodispersed particles,” Appl. Opt. 17, 1980–1982 (1978).
[CrossRef]

S. Holler, J. C. Auger, B. Stout, Y. L. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

S. C. Hill, H. I. Saleheen, M. D. Barnes, W. B. Whitten, J. M. Ramsey, “Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency,” Appl. Opt. 35, 6278–6288 (1996).
[CrossRef] [PubMed]

G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
[CrossRef] [PubMed]

Cytometry (1)

M. Kerker, M. A. Van Dilla, A. Brunsting, J. P. Kratohvil, P. Hsu, D. S. Wang, J. W. Gray, R. G. Langlois, “Is the central dogma of flow cytometry true: that fluorescence intensity is proportional to cellular dye content?” Cytometry 3, 71–78 (1982).
[CrossRef] [PubMed]

Environ. Sci. Technol. (1)

R. N. Berglund, B. Y. H. Liu, “Generation of monodispersed aerosol standards,” Environ. Sci. Technol. 7, 147–153 (1973).
[CrossRef]

J. Aerosol Sci. (1)

P. P. Hairston, J. Ho, F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28, 471–482 (1997).
[CrossRef] [PubMed]

J. Aerosol Sci. Suppl. 1 (1)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Vanreenaen, “An ink jet aerosol generator,” J. Aerosol Sci. Suppl. 1 29, S965 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A. (1)

H. Chew, P. J. McNulty, M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. A. 13, 396–404 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

S. C. Hill, V. Boutou, J. Yu, S. Ramstein, J.-P. Wolf, Y.-L. Pan, S. Holler, R. K. Chang, “Enhanced backward-directed multi-photon-excited fluorescence from dielectric microcavities,” Phys. Rev. Lett. 85, 54–57 (2000).
[CrossRef] [PubMed]

Other (3)

R. F. Harrington, Time Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961), p. 118.

M. Born, E. Wolf, Principles of Optics (Cambridge U. Press, New York, 1999), p. 381.

K. L. Schroder, P. J. Hargis, R. L. Schmitt, D. J. Rader, I. R. Shokair, “Development of an unattended ground sensor for ultraviolet laser-induced fluorescence detection of biological agent aerosols,” in Air Monitoring and Detection of Chemical and Biological Agents II, J. Leonelli, M. L. Althouse, eds., Proc. SPIE3855, 82–91 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the experimental arrangement used to measure laser-induced fluorescence at 90° and 180° from particles that were generated randomly in time. PMTs 1 and 2 detect diode-laser light scattered from a particle that is generated randomly in time and flowing through the trigger region. After an approximately 2-µs time delay, when the particle flows through the sample volume, the Nd:YAG laser fires and the fluorescence is recorded with PMTs 3 or 4. BS, beam splitter.

Fig. 2
Fig. 2

Scanning electron micrograph of particles (clusters of polystyrene microspheres) produced by the IJAG with the heater in the drying column turned on.

Fig. 3
Fig. 3

Calculated fluorescence ratio I(180°)/I(90°) as a function of the refractive index for liquid particles. Our calculation of this ratio was done as in Ref. 7, where the fluorophores are assumed to rotate rapidly relative to the fluorescence emission lifetime. The data points marked by crosses are from measurements of the averaged enhancement ratio I(180°)/I(90°) of single droplets, aggregates, or clusters with the same refractive index (regardless of the differences of size and shape).

Tables (1)

Tables Icon

Table 1 Ratio of Backward-to-Side Fluorescence Intensity I(180°)/I(90°) Measured from Clusters of PSL Microspheres, Aggregates of Dried Tryptophan Particles, and Droplets

Metrics