Abstract

The transportable setup of the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) is presented. Frequency tuneability over a wide range provided by the use of tuneable diode lasers as local oscillators (LO) allows a variety of molecules in the mid-infrared to be observed. Longtime integration, which is essential for astronomical observations, is possible owing to tight frequency control of the LO with optical feedback from an external cavity. THIS is developed to fly on the Stratospheric Observatory for Infrared Astronomy beginning in 2006 but can also be used on different types of ground-based telescopes.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, “Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications,” Appl. Opt. 15, 427–436 (1976).
    [CrossRef] [PubMed]
  2. T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22, 2644–2654 (1983).
    [CrossRef] [PubMed]
  3. R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 297–353.
    [CrossRef]
  4. H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).
  5. A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
    [CrossRef]
  6. M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
    [CrossRef]
  7. T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
    [CrossRef]
  8. D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
    [CrossRef]
  9. T. Kostiuk, F. Espenak, M. J. Mumma, P. Romani, “Infrared studies of hydrocarbons on Jupiter,” Infrared Phys. Technol. 29, 199–204 (1989).
    [CrossRef]
  10. H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laserheterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
    [CrossRef] [PubMed]
  11. A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
    [CrossRef]
  12. R. T. Ku, D. L. Spears, “High-sensivity heterodyne radiometer using a tunable-diode-laser local oscillator,” Opt. Lett. 1, 84–86 (1977).
    [CrossRef] [PubMed]
  13. D. Glenar, T. Kostiuk, D. E. Jennings, D. Buhl, M. J. Mumma, “Tunable diode-laser heterodyne spectrometer for remote observations near 8m,” Appl. Opt. 21, 253–259 (1982).
    [CrossRef] [PubMed]
  14. R. Schieder, “High resolution diode laser and heterodyne spectroscopy with application toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
    [CrossRef]
  15. F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator” Appl. Opt. 37, 5771–5776 (1998).
    [CrossRef]
  16. E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 237–295.
    [CrossRef]
  17. B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB,” in Proceedings of the 1990 MIOP Conference, Stuttgart, Germany (Network GmbH, Hagenburg, Germany, 1990), pp.653–658.
  18. R. Schieder, V. Tolls, G. Winnewisser, “The Cologne acousto-optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
    [CrossRef]
  19. P. Salinari, “The TIRGO observatory,” in Proceedings of the 2nd European Southern Observatory Infrared Workshop, Garching, West Germany, A. F. M. Marwood, K. Kjžr, eds. (European Southern Observatory, Garching, Germany, 1982), pp. 45–54.
  20. A brief description of the Hainberg Solar Tower may be found at http://www.uni-sw.gwdg.de/geninf/hainberg/sonnenturm/esonnenturm.html .
  21. G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Elect. 20, 468–471 (1984).
    [CrossRef]
  22. R. Schieder, G. Rau, B. Vohwinkel, “Characterization and measurement of system stability,” in Instrumentation for Submillimeter Spectroscopy, E. L. Kollberg, ed. Proc. SPIE598, 189–192 (1986).
    [CrossRef]
  23. R. Schieder, C. Kramer, “Optimization of heterodyne observations using Allan variance measurements” Astron. Astrophys. 373, 746–756 (2001).
    [CrossRef]
  24. A brief description of the Istituto Ricerche Solari Locarno may be found at http://umwelttechnik.mnd.fh-wiesbaden.de/divers/irsol/ .
  25. The Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA) is available at http://www-mk.fzk.de:8080/imk2/ame/publications/kopra.docu/ .
  26. A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
    [CrossRef]

2001

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

R. Schieder, C. Kramer, “Optimization of heterodyne observations using Allan variance measurements” Astron. Astrophys. 373, 746–756 (2001).
[CrossRef]

1999

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

1998

1996

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

1995

M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
[CrossRef]

1994

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with application toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

1990

1989

R. Schieder, V. Tolls, G. Winnewisser, “The Cologne acousto-optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

T. Kostiuk, F. Espenak, M. J. Mumma, P. Romani, “Infrared studies of hydrocarbons on Jupiter,” Infrared Phys. Technol. 29, 199–204 (1989).
[CrossRef]

1984

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Elect. 20, 468–471 (1984).
[CrossRef]

1983

T. Kostiuk, M. J. Mumma, “Remote sensing by IR heterodyne spectroscopy,” Appl. Opt. 22, 2644–2654 (1983).
[CrossRef] [PubMed]

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

1982

1977

1976

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

M. M. Abbas, M. J. Mumma, T. Kostiuk, D. Buhl, “Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications,” Appl. Opt. 15, 427–436 (1976).
[CrossRef] [PubMed]

1974

D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
[CrossRef]

Abbas, M. M.

Agrawal, G. P.

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Elect. 20, 468–471 (1984).
[CrossRef]

Beck, M.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Betz, A. L.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
[CrossRef]

Buhl, D.

Courtois, D.

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Delahaigue, A.

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Espenak, F.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

T. Kostiuk, F. Espenak, M. J. Mumma, P. Romani, “Infrared studies of hydrocarbons on Jupiter,” Infrared Phys. Technol. 29, 199–204 (1989).
[CrossRef]

Faist, J.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Fast, K. E.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

Fukunishi, H.

M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
[CrossRef]

H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laserheterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
[CrossRef] [PubMed]

Glenar, D.

Goldstein, J. J.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

Harter, M.

Hewagama, T.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 237–295.
[CrossRef]

Ilegems, M.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Jennings, D. E.

Johnson, M. A.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
[CrossRef]

Kalite, S.

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Käufl, H. U.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Kelley, P. L.

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 237–295.
[CrossRef]

Klumb, B.

Koide, M.

M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
[CrossRef]

Kostiuk, T.

Kramer, C.

R. Schieder, C. Kramer, “Optimization of heterodyne observations using Allan variance measurements” Astron. Astrophys. 373, 746–756 (2001).
[CrossRef]

Ku, R. T.

R. T. Ku, D. L. Spears, “High-sensivity heterodyne radiometer using a tunable-diode-laser local oscillator,” Opt. Lett. 1, 84–86 (1977).
[CrossRef] [PubMed]

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 237–295.
[CrossRef]

Livengood, T. A.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

McLaren, R. A.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

Menzies, R. T.

R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 297–353.
[CrossRef]

Müller, A.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Müller, P.

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB,” in Proceedings of the 1990 MIOP Conference, Stuttgart, Germany (Network GmbH, Hagenburg, Germany, 1990), pp.653–658.

Mumma, M. J.

Oesterle, U.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Ohnuma, T.

Okano, S.

Parvitte, B.

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Peterson, D. W.

D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
[CrossRef]

Rau, G.

R. Schieder, G. Rau, B. Vohwinkel, “Characterization and measurement of system stability,” in Instrumentation for Submillimeter Spectroscopy, E. L. Kollberg, ed. Proc. SPIE598, 189–192 (1986).
[CrossRef]

Romani, P.

T. Kostiuk, F. Espenak, M. J. Mumma, P. Romani, “Infrared studies of hydrocarbons on Jupiter,” Infrared Phys. Technol. 29, 199–204 (1989).
[CrossRef]

Rothermel, H.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Salinari, P.

P. Salinari, “The TIRGO observatory,” in Proceedings of the 2nd European Southern Observatory Infrared Workshop, Garching, West Germany, A. F. M. Marwood, K. Kjžr, eds. (European Southern Observatory, Garching, Germany, 1982), pp. 45–54.

Schieder, R.

R. Schieder, C. Kramer, “Optimization of heterodyne observations using Allan variance measurements” Astron. Astrophys. 373, 746–756 (2001).
[CrossRef]

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator” Appl. Opt. 37, 5771–5776 (1998).
[CrossRef]

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with application toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

R. Schieder, V. Tolls, G. Winnewisser, “The Cologne acousto-optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

R. Schieder, G. Rau, B. Vohwinkel, “Characterization and measurement of system stability,” in Instrumentation for Submillimeter Spectroscopy, E. L. Kollberg, ed. Proc. SPIE598, 189–192 (1986).
[CrossRef]

Schmülling, F.

Spears, D. L.

Sutton, E. C.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

Taguchi, M.

M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
[CrossRef]

H. Fukunishi, S. Okano, M. Taguchi, T. Ohnuma, “Laserheterodyne spectrometer using a liquid nitrogen cooled tunable diode laser for remote measurements of atmospheric O3 and N2O,” Appl. Opt. 29, 2722–2728 (1990).
[CrossRef] [PubMed]

Thiebeaux, C.

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

Tolls, V.

R. Schieder, V. Tolls, G. Winnewisser, “The Cologne acousto-optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

Vohwinkel, B.

R. Schieder, G. Rau, B. Vohwinkel, “Characterization and measurement of system stability,” in Instrumentation for Submillimeter Spectroscopy, E. L. Kollberg, ed. Proc. SPIE598, 189–192 (1986).
[CrossRef]

Vowinkel, B.

F. Schmülling, B. Klumb, M. Harter, R. Schieder, B. Vowinkel, G. Winnewisser, “High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator” Appl. Opt. 37, 5771–5776 (1998).
[CrossRef]

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB,” in Proceedings of the 1990 MIOP Conference, Stuttgart, Germany (Network GmbH, Hagenburg, Germany, 1990), pp.653–658.

Winnewisser, G.

Yu, Y.

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Appl. Opt.

Appl. Phys. Let.

A. Müller, M. Beck, J. Faist, U. Oesterle, M. Ilegems, “Electrically tunable, room-temperature quantum-cascade lasers,” Appl. Phys. Let. 75, 1509–1511 (1999).
[CrossRef]

Astron. Astrophys.

R. Schieder, C. Kramer, “Optimization of heterodyne observations using Allan variance measurements” Astron. Astrophys. 373, 746–756 (2001).
[CrossRef]

H. Rothermel, H. U. Käufl, Y. Yu, “A heterodyne spectrometer for astronomical measurements at 10 micrometers,” Astron. Astrophys. 126, 387–392 (1983).

Astrophys. J. Lett.

A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, “Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus,” Astrophys. J. Lett. 208, L141–L144 (1976).
[CrossRef]

Exp. Astron.

R. Schieder, V. Tolls, G. Winnewisser, “The Cologne acousto-optical spectrometer,” Exp. Astron. 1, 101–121 (1989).
[CrossRef]

Geophy. Res. Lett.

M. Koide, M. Taguchi, H. Fukunishi, “Ground-based remote sensing of methane height profiles with a tuneable diode laser heterodyne spectrometer,” Geophy. Res. Lett. 22, 401–404 (1995).
[CrossRef]

Geophys. Res. Lett.

T. Kostiuk, K. E. Fast, T. A. Livengood, T. Hewagama, J. J. Goldstein, F. Espenak, D. Buhl, “Direct measurement of winds on Titan,” Geophys. Res. Lett. 28, 2361–2364 (2001).
[CrossRef]

IEEE J. Quantum Elect.

G. P. Agrawal, “Line narrowing in a single-mode injection laser due to external optical feedback,” IEEE J. Quantum Elect. 20, 468–471 (1984).
[CrossRef]

Infrared Phys. Technol.

R. Schieder, “High resolution diode laser and heterodyne spectroscopy with application toward remote sensing,” Infrared Phys. Technol. 35, 477–486 (1994).
[CrossRef]

A. Delahaigue, D. Courtois, C. Thiebeaux, S. Kalite, B. Parvitte, “Atmospheric laser heterodyne detection,” Infrared Phys. Technol. 37, 7–12 (1996).
[CrossRef]

T. Kostiuk, F. Espenak, M. J. Mumma, P. Romani, “Infrared studies of hydrocarbons on Jupiter,” Infrared Phys. Technol. 29, 199–204 (1989).
[CrossRef]

Nature

D. W. Peterson, M. A. Johnson, A. L. Betz, “Infrared heterodyne spectroscopy of CO2 on Mars,” Nature 250, 128–130 (1974).
[CrossRef]

Opt. Lett.

Other

R. T. Menzies, “Laser heterodyne detection techniques,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 297–353.
[CrossRef]

E. D. Hinkley, R. T. Ku, P. L. Kelley, “Techniques for detection of molecular pollutants by absorption of laser radiation” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 237–295.
[CrossRef]

B. Vowinkel, P. Müller, “Cryogenic L-band HEMT-amplifier with a noise figure of less than 0.1 dB,” in Proceedings of the 1990 MIOP Conference, Stuttgart, Germany (Network GmbH, Hagenburg, Germany, 1990), pp.653–658.

R. Schieder, G. Rau, B. Vohwinkel, “Characterization and measurement of system stability,” in Instrumentation for Submillimeter Spectroscopy, E. L. Kollberg, ed. Proc. SPIE598, 189–192 (1986).
[CrossRef]

P. Salinari, “The TIRGO observatory,” in Proceedings of the 2nd European Southern Observatory Infrared Workshop, Garching, West Germany, A. F. M. Marwood, K. Kjžr, eds. (European Southern Observatory, Garching, Germany, 1982), pp. 45–54.

A brief description of the Hainberg Solar Tower may be found at http://www.uni-sw.gwdg.de/geninf/hainberg/sonnenturm/esonnenturm.html .

A brief description of the Istituto Ricerche Solari Locarno may be found at http://umwelttechnik.mnd.fh-wiesbaden.de/divers/irsol/ .

The Karlsruhe Optimized and Precise Radiative transfer Algorithm (KOPRA) is available at http://www-mk.fzk.de:8080/imk2/ame/publications/kopra.docu/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of the setup. The tuneable-diode laser beam used as a local oscillator passes the diplexer in transmission. By means of a scanning mirror different sources can be selected for observation and calibration. Those signals are reflected at the diplexer. The superimposed beams are then focused on the MCT mixer detector that generates a photocurrent (i.e., the intermediate frequency signal), which is analyzed by an acousto-optical spectrometer and processed by a personal computer.

Fig. 2
Fig. 2

Scaled view of the optical receiver part with the main components to show the compactness of the setup. The size of the aluminum cube is roughly 60 × 60 × 45 cm.3

Fig. 3
Fig. 3

Scheme of the frequency-stabilization setup (see text for further description).

Fig. 4
Fig. 4

Fractions of integration time per load resulting in minimal rms value are plotted against the signal source temperature. The total integration time is normalized to unity. The plot was generated with the indicated load and system-noise temperatures (Tsys). Note that for signal source temperatures that exceed the hot-load temperature, more time must be spend on the hot load than on the signal source

Fig. 5
Fig. 5

Allan-variance measurement. Up to several seconds of integration time per position and duty cycle the system behaves purely radiometric. For longer integration times additional noise contributions occur, and the Allan-variance minimum can be found around 50–60 s.

Fig. 6
Fig. 6

Laboratory measurement with an integration time of 11 h plotted with a resolution of 1 MHz. The electric oven was used as signal source and hot load, whereas the absorber at ambient temperature was used as reference source and cold load. Then a spectrum was derived according to Eq. (1). The increase in noise at higher frequencies is due to the roll-off of the mixer. The system-noise temperature at 1600 MHz is about 3 times larger than at 600 MHz.

Fig. 7
Fig. 7

Stratospheric ozone absorption near 1042 cm-1 measured at Cologne on 6 March 2001. The line identification was done with the HITRAN database.

Fig. 8
Fig. 8

Left, stratospheric ozone absorption near 1085 cm-1. The spectrum was unfolded, and only the upper-side band is shown. On the right, ozone height profile retrieved with KOPRA.

Fig. 9
Fig. 9

The Moon as thermal background source. The slope in the derived surface temperature is a result of atmospheric absorption. The frequency resolution is 100 MHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F=TS-TRTH-TC ΔTcal=S-RH-C ΔTcal.
ΔXX=1BflτX1/2.
ΔF2=ΔTcal2H-C21BflS2τS+R2τR+F2H2τH+C2τC.
τobs=τS+τR+τH+τC+τD.
τS,R=XS,RQτobs-τD, τH,C=XH,CQ |F|τobs-τD,
ΔF2=rms=ΔTcalH-CQBflτobs-τD1/2.

Metrics