Abstract

A laser-isotope-separation study of lithium has been performed with two-step excitation involving UV laser radiation and a visible tunable-diode laser. The method yields a high degree of selectivity by tuning the narrow-linewidth diode laser to the D 1 or D 2 levels of the lithium atom. Selective laser excitation is simplified by the use of the tunable diode laser and the overall approach benefits from the application of a compact mass selector that includes a precision magnetic sector and an ion beam that is designed specifically for light atoms such as lithium.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
    [CrossRef]
  2. N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
    [CrossRef]
  3. M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).
  4. M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
    [CrossRef]
  5. R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
    [CrossRef] [PubMed]
  6. R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
    [CrossRef]
  7. G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
    [CrossRef]
  8. G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
    [CrossRef]
  9. L. Hollberg, “CW dye lasers,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 185–238.
    [CrossRef]
  10. F. J. Duarte, J. A. Piper, “Narrow linewidth high prf copper laser-pumped dye-laser oscillators,” Appl. Opt. 23, 1391–1394 (1984).
    [CrossRef]
  11. I. L. Bass, R. E. Bonanno, R. P. Hackel, P. R. Hammond, “High-average-power dye laser at Lawrence Livermore National Laboratory,” Appl. Opt. 31, 6993–7006 (1992).
    [CrossRef] [PubMed]
  12. S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
    [CrossRef]
  13. Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
    [CrossRef]
  14. A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
    [CrossRef]
  15. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.
    [CrossRef]
  16. F. J. Duarte, “Dispersive external-cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel-Dekker, New York, 1995), pp. 83–112.
  17. I. E. Olivares, A. E. Duarte, “Resonance ionization spectroscopy in a thermal lithium beam by means of diode lasers,” Appl. Opt. 38, 7481–7485 (1999).
    [CrossRef]
  18. I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
    [CrossRef]
  19. C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
    [CrossRef]
  20. C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
    [CrossRef]
  21. J. R. Pierce, “Rectilinear electron flows in beams,” J. Appl. Phys. II, 548–554 (1940).
    [CrossRef]
  22. O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).
  23. A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
    [CrossRef]
  24. W. Demtröder, “Laser spectroscopy in molecular beams” in Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), pp. 516–550.

1999

1998

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

1996

Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
[CrossRef]

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

1994

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

1992

1990

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

1989

R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
[CrossRef]

G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
[CrossRef]

1984

1982

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

1979

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

1977

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

1973

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[CrossRef]

1969

C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[CrossRef]

1968

O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).

1940

J. R. Pierce, “Rectilinear electron flows in beams,” J. Appl. Phys. II, 548–554 (1940).
[CrossRef]

Arisawa, T.

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Arizawa, T.

Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
[CrossRef]

Bass, I. L.

Bekov, G. I.

G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
[CrossRef]

Bonanno, R. E.

Bonnanno, A. S.

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Chatterjee, U. K.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Cooper, J.

C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[CrossRef]

Dale, J. M.

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Dasgupta, K.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Demtröder, W.

W. Demtröder, “Laser spectroscopy in molecular beams” in Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), pp. 516–550.

Deng, L.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

Dinklage, A.

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Duarte, A. E.

Duarte, F. J.

Hackel, R. P.

Hammond, P. R.

Heinz, O.

O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).

Hollberg, L.

L. Hollberg, “CW dye lasers,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 185–238.
[CrossRef]

Hurst, G. S.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Karlov, N. V.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Kashiwagi, H.

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

Kato, M.

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
[CrossRef]

Kramer, S. D.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Krynetskii, B. B.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Kumar, S.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Kunze, H. J.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Letokhov, V. S.

G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
[CrossRef]

Lokajczyk, T.

I. E. Olivares, A. E. Duarte, T. Lokajczyk, A. Dinklage, F. J. Duarte, “Doppler-free spectroscopy and collisional studies with tunable diode lasers of lithium isotopes in a heat-pipe oven,” J. Opt. Soc. Am. B 15, 1932–1939 (1998).
[CrossRef]

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Manohar, K. G.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Maruyama, Y.

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
[CrossRef]

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Nair, L. G.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Nakayama, T.

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

Olivares, I. E.

Payne, M. G.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Pierce, J. R.

J. R. Pierce, “Rectilinear electron flows in beams,” J. Appl. Phys. II, 548–554 (1940).
[CrossRef]

Piper, J. A.

Radaev, V. N.

G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
[CrossRef]

Reaves, R. T.

O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).

Schweer, B.

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Shaw, R. W.

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
[CrossRef]

Shiba, K.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Shmith, D. H.

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Singh, S.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Smith, D. H.

R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
[CrossRef]

Stel’makh, O. M.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Sugiyama, A.

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

Suzuki, Y.

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Thonnard, N.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

Vidal, C. R.

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[CrossRef]

C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[CrossRef]

Yamashita, M.

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

Young, J. P.

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
[CrossRef]

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Zorabedian, P.

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.
[CrossRef]

Anal. Chem.

R. W. Shaw, J. P. Young, D. H. Smith, “Diode laser initiated resonance ionization mass spectrometry of lanthanum,” Anal. Chem. 61, 695–697 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

T. Arisawa, Y. Maruyama, Y. Suzuki, K. Shiba, “Lithium isotope separation by laser,” Appl. Phys. B 28, 73–76 (1982).
[CrossRef]

Fresenius Z. Anal. Chem.

G. I. Bekov, V. S. Letokhov, V. N. Radaev, “Laser photoionization spectroscopy for ultrasensitive trace element analysis,” Fresenius Z. Anal. Chem. 335, 19–24 (1989).
[CrossRef]

J. Appl. Phys.

C. R. Vidal, “Spectroscopic observations of subsonic and sonic vapor inside an open-ended heat pipe,” J. Appl. Phys. 44, 2225–2232 (1973).
[CrossRef]

C. R. Vidal, J. Cooper, “Heat-pipe oven: a new, well defined metal vapor device for spectroscopic measurements,” J. Appl. Phys. 40, 3370–3374 (1969).
[CrossRef]

J. R. Pierce, “Rectilinear electron flows in beams,” J. Appl. Phys. II, 548–554 (1940).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, “High-power high-repetition-rate copper-vapor-pumped dye laser,” Opt. Eng. 33, 1894–1904 (1994).
[CrossRef]

Y. Maruyama, M. Kato, T. Arizawa, “Effects of excited-state absorption and amplified spontaneous emission in a high-average-power dye laser amplifier pumped by copper vapor lasers,” Opt. Eng. 35, 1084–1087 (1996).
[CrossRef]

A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, “Characteristics of a pressure-tuned single-mode dye laser pumped by a copper vapor laser,” Opt. Eng. 35, 1093–1097 (1996).
[CrossRef]

Phys. Rev. A

R. W. Shaw, J. P. Young, D. H. Shmith, A. S. Bonnanno, J. M. Dale, “Hyperfine structure of lanthanum at sub-Doppler resolution by diode-laser-initiated resonance ionization mass spectroscopy,” Phys. Rev. A 41, 2566–2573 (1990).
[CrossRef] [PubMed]

Rev. Mod. Phys.

G. S. Hurst, M. G. Payne, S. D. Kramer, J. P. Young, “Resonance ionization spectroscopy and one-atom detection,” Rev. Mod. Phys. 51, 767–819 (1979).
[CrossRef]

Rev. Sci. Instrum.

M. G. Payne, L. Deng, N. Thonnard, “Applications of resonance ionization mass spectroscopy,” Rev. Sci. Instrum. 65, 2433–2459 (1994).
[CrossRef]

O. Heinz, R. T. Reaves, “Lithium ion emitter for low energy beam experiments,” Rev. Sci. Instrum. 38, 1129–1130 (1968).

A. Dinklage, T. Lokajczyk, H. J. Kunze, B. Schweer, I. E. Olivares, “In situ density measurement for a thermal lithium beam employing diode lasers,” Rev. Sci. Instrum. 69, 321–322 (1998).
[CrossRef]

Sov. J. Quantum Electron.

N. V. Karlov, B. B. Krynetskii, O. M. Stel’makh, “Measurement of the photoionization cross section of the Li atom at the 2P level,” Sov. J. Quantum Electron. 7, 1305–1306 (1977).
[CrossRef]

Other

M. Yamashita, H. Kashiwagi, “Method for separation and enrichment of lithium isotopes by laser,” U.S. Patent4,149,077 (10April1979).

L. Hollberg, “CW dye lasers,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 185–238.
[CrossRef]

W. Demtröder, “Laser spectroscopy in molecular beams” in Basic Concepts and Instrumentation, 2nd ed. (Springer-Verlag, New York, 1996), pp. 516–550.

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, New York, 1995), pp. 349–442.
[CrossRef]

F. J. Duarte, “Dispersive external-cavity semiconductor lasers,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel-Dekker, New York, 1995), pp. 83–112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of the mass separator. O, Molybdenum crucible with lithium; P. E., Pierce extractor; E. L., Einzel lenses; M. S., magnetic sector; FC1, FC2, Faraday cups; pA1, pA2, picoampermeters; I. S., lithium ion source. The lithium-ion source can be placed behind the Pierce extractor for nonselective ion production and calibration of the mass separator.

Fig. 2
Fig. 2

Mass spectrum of mixed 7Li/6Li beta-eucriptite source.

Fig. 3
Fig. 3

Resonance ionization mass hyperfine spectrum recorded at the FC1.

Fig. 4
Fig. 4

Resonance ionization mass hyperfine spectrum recorded at the FC2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ni=αPiPe1-T/A,

Metrics