Abstract

A decrease in the depolarization ratio by more than one order of magnitude by use of a recently proposed Faraday mirror (FM) in comparison with the traditional FM has been demonstrated experimentally. At a high average laser power, the possibility of an increase in the accuracy of compensation of depolarization in the active element by means of a λ/4 plate with both the traditional and the novel FM is shown.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
    [CrossRef]
  2. Y. Liao, R. J. D. Miller, M. R. Armstrong, “Pressure tuning of thermal lensing for high-power scaling,” Opt. Lett. 24, 1343–1345 (1999).
    [CrossRef]
  3. E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.
  4. E. Khazanov, A. Poteomkin, E. Katin, “Novel method for compensating birefringence in active elements of solid-state lasers,” J. Opt. Soc. Am. B 41, 667–671 (2002).
    [CrossRef]
  5. W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  6. N. Kugler, S. Dong, Q. Lu, H. Weber, “Investigation of the misalignment sensitivity of a birefringence-competed two-rod Nd:YAG laser system,” Appl. Opt. 36, 9359–9366 (1997).
    [CrossRef]
  7. N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
    [CrossRef]
  8. N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).
  9. D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  10. W. A. Clarkson, N. S. Felgate, D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
    [CrossRef]
  11. R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
    [CrossRef]
  12. R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
    [CrossRef]
  13. E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [Kvant. Electron. 31, 351–356 (2001)]
    [CrossRef]
  14. E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (4Oct.1983).
  15. E. A. Khazanov, “A novel technique for compensation of birefringence in active elements of solid-state lasers,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 528–529.
  16. G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
    [CrossRef]
  17. M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
    [CrossRef]
  18. N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
    [CrossRef]
  19. N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
    [CrossRef]
  20. K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000).
    [CrossRef]
  21. C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, Vol. 26 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.
  22. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  23. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Electron. 26, 59–64 (1999)].
    [CrossRef]
  24. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
    [CrossRef]
  25. N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
    [CrossRef]
  26. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  27. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
    [CrossRef]
  28. J. F. Nye, Physical Properties of Crystals, (Oxford U. Press, London, 1964).
  29. E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000) [Kvant. Electron. 30, 147–151 (2000)].
    [CrossRef]
  30. N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000).
    [CrossRef]
  31. T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

2002 (2)

2001 (1)

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [Kvant. Electron. 31, 351–356 (2001)]
[CrossRef]

2000 (6)

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000).
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000) [Kvant. Electron. 30, 147–151 (2000)].
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

1999 (5)

W. A. Clarkson, N. S. Felgate, D. C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999).
[CrossRef]

Y. Liao, R. J. D. Miller, M. R. Armstrong, “Pressure tuning of thermal lensing for high-power scaling,” Opt. Lett. 24, 1343–1345 (1999).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Electron. 26, 59–64 (1999)].
[CrossRef]

1997 (1)

1992 (3)

T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

1991 (1)

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

1989 (1)

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

1988 (1)

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

1980 (1)

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

1971 (1)

W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

1970 (1)

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Andreev, N.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

Andreev, N. F.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

Armstrong, M. R.

Babin, A.

Babin, A. A.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

Bondarenco, N. G.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

Clarkson, W. A.

de Wit, M.

W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Denman, C. A.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, Vol. 26 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Dong, S.

Eremina, I. V.

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

Felgate, N. S.

Giuliani, G.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Hanna, D. C.

Hua, R.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Izawa, Y.

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Kandasamy, R.

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Katin, E.

E. Khazanov, A. Poteomkin, E. Katin, “Novel method for compensating birefringence in active elements of solid-state lasers,” J. Opt. Soc. Am. B 41, 667–671 (2002).
[CrossRef]

Khazanov, E.

E. Khazanov, A. Poteomkin, E. Katin, “Novel method for compensating birefringence in active elements of solid-state lasers,” J. Opt. Soc. Am. B 41, 667–671 (2002).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

Khazanov, E. A.

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [Kvant. Electron. 31, 351–356 (2001)]
[CrossRef]

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000) [Kvant. Electron. 30, 147–151 (2000)].
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Electron. 26, 59–64 (1999)].
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

E. A. Khazanov, “A novel technique for compensation of birefringence in active elements of solid-state lasers,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 528–529.

Kiselev, A.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

Kugler, N.

Kulagin, O.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Kuznetsov, S. V.

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

Lai, K. S.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Liao, Y.

Libby, S. I.

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, Vol. 26 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

Lu, Q.

Lundstrom, E. A.

E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (4Oct.1983).

Martinelly, M.

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

Massey, G. A.

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

Mehl, O.

Miller, R. J. D.

Movshevich, B.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Nakui, S.

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals, (Oxford U. Press, London, 1964).

Palashov, O.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. Andreev, A. Babin, A. Kiselev, O. Palashov, E. Khazanov, O. Shaveleov, T. Zarubina, “Thermooptical constant of magneto-active glasses,” J. Opt. Technol. 67, 556–558 (2000).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

Palashov, O. V.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

Paperny, S. B.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

Pasmanik, G.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

Pasmanik, G. A.

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

Petrovsky, G. T.

T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

Phua, P. B.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

Reitze, D.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of TGG crystal orientation on the isolation ratio of the Faraday isolator at a high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

Reitze, D. H.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

Ristori, P.

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Rodchenkov, V.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Scott, A.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Scott, W. C.

W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

Shaveleov, O.

Soan, P.

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Tashiro, H.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Wada, S.

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Weber, H.

Wu, R.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

Yamanaka, M.

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Zarubina, T.

Zarubina, T. V.

T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970).
[CrossRef]

W. C. Scott, M. de Wit, “Birefringence compensation and Tem00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. A. Rockwell, “A review of phase-conjugate solid-state laser,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

N. Andreev, E. Khazanov, O. Kulagin, B. Movshevich, O. Palashov, G. Pasmanik, V. Rodchenkov, A. Scott, P. Soan, “A two-channel repetitively pulsed Nd:YAG laser operating at 25 Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

J. Opt. Soc. Am. B (2)

E. Khazanov, A. Poteomkin, E. Katin, “Novel method for compensating birefringence in active elements of solid-state lasers,” J. Opt. Soc. Am. B 41, 667–671 (2002).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

J. Opt. Technol. (1)

Laser Phys. (1)

N. F. Andreev, A. A. Babin, E. A. Khazanov, S. B. Paperny, G. A. Pasmanik, “Pulse-repetition solid-state laser with SBS-cells,” Laser Phys. 2, 1–19 (1992).

Opt. Commun. (3)

G. Giuliani, P. Ristori, “Polarization flip cavities: a new approach to laser resonators,” Opt. Commun. 35, 109–112 (1980).
[CrossRef]

M. Martinelly, “A universal compensator for polarization changes induced birefringence on a retracing beam,” Opt. Commun. 72, 341–344 (1989).
[CrossRef]

R. Hua, S. Wada, H. Tashiro, “Principles and limitations of a quarter-wave plate for reducing the depolarization loss from thermally induced birefringence in Nd:YAG Lasers,” Opt. Commun. 175, 189–200 (2000).
[CrossRef]

Opt. Lett. (2)

Opt. Rev. (1)

R. Kandasamy, M. Yamanaka, Y. Izawa, S. Nakui, “Analysis of birefringence compensation using a quarter-wave plate in solid-state lasers,” Opt. Rev. 7, 149–151 (2000).
[CrossRef]

Opticheskii Zhurnal (1)

T. V. Zarubina, G. T. Petrovsky, “Magnetooptical glasses made in Russia,” Opticheskii Zhurnal 59, 48–52 (1992) (in Russian).

Quantum Electron. (4)

E. A. Khazanov, “Characteristic features of the operation of different designs of the Faraday isolator for high average laser-radiation power,” Quantum Electron. 30, 147–151 (2000) [Kvant. Electron. 30, 147–151 (2000)].
[CrossRef]

E. A. Khazanov, “New Faraday rotator for high average power lasers,” Quantum Electron. 31, 351–356 (2001). [Kvant. Electron. 31, 351–356 (2001)]
[CrossRef]

N. F. Andreev, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, E. A. Khazanov, D. H. Reitze, “45dB Faraday isolator for 100W average radiation power,” Quantum Electron. 30, 1107–1108 (2000) [Kvant. Electron. 30, 1107–1108 (2000)].
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999) [Kvant. Electron. 26, 59–64 (1999)].
[CrossRef]

Sov. J. Quantum Electron. (2)

N. Andreev, S. V. Kuznetsov, O. Palashov, G. Pasmanik, E. Khazanov, “Four-pass YAG:Nd laser amplifier with compensation for aberration and polarization distortions of the wave front,” Sov. J. Quantum Electron. 22, 800–802 (1992) [Kvant. Electron. 19, 862–802 (1992)].
[CrossRef]

N. Andreev, N. G. Bondarenco, I. V. Eremina, E. Khazanov, S. V. Kuznetsov, O. Palashov, G. Pasmanik, “A single-mode YAG:Nd laser with an SBS mirror and conversion of the radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1050 (1991) [Kvant. Electron. 18, 1154–1160 (1991)].
[CrossRef]

Other (7)

E. Khazanov, N. Andreev, O. Palashov, D. Reitze, “Use of mechanical stress in design of a Faraday isolator for high power radiation,” in Conference on Lasers and Electro-Optics (CLEO), Postdeadline papers, Vol. 39 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2000), pp. 321–322.

E. A. Lundstrom, “Waveplate for correcting thermally induced stress birefringence in solid state lasers,” U.S. patent4,408,334 (4Oct.1983).

E. A. Khazanov, “A novel technique for compensation of birefringence in active elements of solid-state lasers,” in Conference on Lasers and Electro-Optics (CLEO), Vol. 56 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001), pp. 528–529.

K. S. Lai, R. Wu, P. B. Phua, “Multiwatt KTiOPO4 optical parametric oscillators pumped within randomly and linearly polarized Nd:YAG laser cavities,” in Nonlinear Materials, Devices and Applications, J. W. Pierce, eds., Proc. SPIE3928, 43–51 (2000).
[CrossRef]

C. A. Denman, S. I. Libby, “Birefringence compensation using a single Nd:YAG rod,” in Advanced Solid-State Lasers, Vol. 26 of the OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 608–612.

W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999).
[CrossRef]

J. F. Nye, Physical Properties of Crystals, (Oxford U. Press, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Compensation of birefringence in AE with the traditional and new FM designs. P, polarizer; FR, Faraday element (Φ, angle of rotation of polarization plane); QR, 90° quartz polarization rotator; M, mirror.

Fig. 2
Fig. 2

Experimental scheme. cw, calcite wedge; GS, glass sample; FR, Faraday element (Φ, angle of rotation of polarization plane); M, mirror; PM1, powermeter of depolarized component; PM2, powermeter of polarized component; L1, L2, telescopes.

Fig. 3
Fig. 3

Depolarization ratio vs power: AE without compensation (squares), traditional FM without AE (filled circles, straight line), traditional FM and AE (filled triangles), new FM without AE (open circles), and new FM with AE (open triangles).

Fig. 4
Fig. 4

Experimental and theoretical dependences of the depolarization ratio of FM without AE versus the inclination angle of the axis of λ/4 plate at radiation power 20W.

Fig. 5
Fig. 5

Depolarization ratio vs p a with (a) the traditional FM and (b) the new FM for the scheme in part b in Fig. 1 (thick lines) and part c in Fig. 1. Solid lines, the dependences at α = π/4; dotted lines, at α = 0. Graphs for the traditional FM are plotted at p = 0.5, for new FM at p = 2.5.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

A=K0 sinδa2ctgδa2-i cos 2φ-i sin 2φ-i sin 2φctgδa2+i cos 2φ,
δa=r2r02 pa,ξa=2pa44pa11-pa12,Qa=1LadLadTna341+va1-vapa11-pa12,pa=1λQaκa1+2ξa6r02R2 Pa,
Mold=Fπ/4, δlFπ/4, δl,
Mnew=Fπ/6, 2δl/3R-Fπ/12, δl/3 ×Fπ/12, δl/3R+Fπ/6, 2δl/3,
R±=0±1±10,FΦ, δl= sinδ2ctgδ2-i δlδcos 2φ- 2Φδ-i δlδsin 2φ2Φδ-i δlδsin 2φctgδ2+i δlδcos 2φ,
δ2=δl2+δc2,
δl=2pr021-exp-r2/r02r2-11+2ξ3,δc=2Φ,ξ=2p44p11-p12,
p=LλαQκ P0, Q=1LdLdTn0341+v1-vp11-p12,
EA=x0E0 exp-r22r02,
Eold,new = AMold,newAEA,E1old,new = L4α1AMold,newAL4α1EA,E2old,new = AL4α2Mold,newL4α2AEA.
γ=02πdφ 0E · x02 rdr02πdφ 0E2 rdr-1.
δl  1.
γold1=8π2 p21+2ξ321+sin2 2α1A1 +1-3 sin2 2α1f1pa,
γold2=8π2 p21+2ξ321+sin2 2α2A1 +142 cos 4α2-12f1pa+12cos 4α2f1pa2,
γnew1=23-π28p4π41+2ξ342 cos2 2α1A2 +3 sin2 2α1-1f2pa,
γnew2=23-π28p4π41+2ξ342 cos2 2α2A2 +142-cos 4α2f2pa-cos 4α2f2pa2,
fnpa=0exp-y1-exp-yy-12n ×sin2paydy,
A1=01y-exp-yy-12dyexp y  0.137, A2=01y-exp-yy-14dyexp y  0.042.
γold1pa=0=γold2pa=0 =8π2 p21+2ξ32 ×A11+sin2 2α1, 2,γnew1pa=0=γnew2pa=0 =23-π2p42π41+2ξ34 ×A22 cos2 2α1, 2,
γold1pa=4π2 p21+2ξ32A12+cos2 2α1,γold2pa=232π2 p21+2ξ32 A1,γnew1pa=23-π24p4π41+2ξ34 ×A22+2 cos2 2α1,γnew2pa=23-π2p4π41+2ξ34 ×A213-6 sin2 2α2.
ρ=r02rp2,
EA=x0E0 exp-r2m2r02m.
pa=Qaλκa1+2ξa121-exp-2ρPa,
fnpa=1σ1+2n0y-10ydz 0zexp-ymdy2n×exp-ymsin2×4paρy-1+exp-ρyρy1-exp-2ρdy,
An=Anm=1σ1+2n0y-10ydz 0zexp ×-ymdy2n exp-ymdy,
σ=0exp-ymdy.
γold1,2α1,2=π/4,pa=0=2γold1,2α1,2=0,pa=0.

Metrics