Abstract

Multiphoton excitation through optical fibers is limited by pulse broadening caused by self-phase modulation. We show that for short fiber lengths (approximately 2 m) two-photon excitation efficiency at the fiber output can be substantially improved by single-mode propagation in a large-area multimode fiber (10-µm core diameter) instead of a standard 5.5-µm core fiber. Measurements and numerical simulations of postfiber spectra and pulse widths demonstrate that the increase in efficiency is due to a reduction of nonlinear pulse broadening. Single-mode propagation in a large-core fiber is thus suitable for multiphoton applications for which pulse recompression is not possible at the fiber end.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
    [CrossRef] [PubMed]
  3. R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
    [CrossRef]
  4. A. Lago, A. T. Obeidat, A. E. Kaplan, J. B. Khurgin, P. L. Shkolnikov, M. D. Stern, “Two-photon-induced fluorescence of biological markers based on optical fibers,” Opt. Lett. 20, 2054–2056 (1995).
    [CrossRef] [PubMed]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  6. P. M. Delaney, M. R. Harris, “Fiberoptics in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 515–523.
    [CrossRef]
  7. F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
    [CrossRef] [PubMed]
  8. M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993).
    [CrossRef]
  9. B. R. Washburn, J. A. Buck, S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Opt. Lett. 25, 445–447 (2000).
    [CrossRef]
  10. S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A217 (1997).
  11. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [CrossRef]
  12. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
    [CrossRef]
  13. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997).
    [CrossRef]
  14. M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
    [CrossRef]
  15. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  16. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef] [PubMed]
  17. M. T. Myaing, J. Urayama, A. Braun, T. B. Norris, “Nonlinear propagation of negatively chirped pulses: maximizing the peak intensity at the output of a fiber probe,” Opt. Express 7, 210–214 (2000), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  18. C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
    [CrossRef] [PubMed]

2001

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

2000

1999

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

1998

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
[CrossRef]

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

1997

1996

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

1995

1993

M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993).
[CrossRef]

1990

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1969

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Baltuska, A.

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Braun, A.

Buck, J. A.

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

de Sandro, J.-P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Delaney, P. M.

P. M. Delaney, M. R. Harris, “Fiberoptics in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 515–523.
[CrossRef]

Denk, W.

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

Fermann, M. E.

Feurer, T.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Gaeta, A. L.

Haibara, T.

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

Harris, M. R.

P. M. Delaney, M. R. Harris, “Fiberoptics in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 515–523.
[CrossRef]

Helmchen, F.

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

Höpfel, R. A.

M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993).
[CrossRef]

Kaplan, A. E.

Khurgin, J. B.

Kihara, M.

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Lago, A.

Maiti, S.

S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A217 (1997).

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Matsumoto, M.

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

Myaing, M. T.

Norris, T. B.

Obeidat, A. T.

Oberthaler, M.

M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993).
[CrossRef]

Pshenichnikov, M. S.

Ralph, S. E.

Ranka, J. K.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Sauerbrey, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Shkolnikov, P. L.

Simon, U.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Squier, J. A.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Stern, M. D.

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

Tomita, S.

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Urayama, J.

Washburn, B. R.

Webb, W. W.

S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A217 (1997).

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Wiersma, D. A.

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Wolleschensky, R.

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

Appl. Phys. B

R. Wolleschensky, T. Feurer, R. Sauerbrey, U. Simon, “Characterization and optimization of a laser-scanning microscope in the femtosecond regime,” Appl. Phys. B 67, 87–94 (1998).
[CrossRef]

Appl. Phys. Lett.

M. Oberthaler, R. A. Höpfel, “Special narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 68, 1017–1019 (1993).
[CrossRef]

Biophys. J.

S. Maiti, J. K. Ranka, A. L. Gaeta, W. W. Webb, “Multiphoton fluorescence spectroscopy through optical fibers,” Biophys. J. 72, A217 (1997).

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J.-P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

J. Biomed. Opt.

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1, 296–304 (1996).
[CrossRef] [PubMed]

C. J. Bardeen, V. V. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, P. M. Weber, “Effect of pulse shape on the efficiency of multiphoton processes: implications for biological microscopy,” J. Biomed. Opt. 4, 362–367 (1999).
[CrossRef] [PubMed]

J. Lightwave Technol.

M. Kihara, M. Matsumoto, T. Haibara, S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14, 2209–2214 (1996).
[CrossRef]

Neuron

F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals,” Neuron 31, 903–912 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

P. M. Delaney, M. R. Harris, “Fiberoptics in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1995), pp. 515–523.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical setup. Ultrashort laser pulses from a Ti:sapphire laser double pass a pair of diffraction gratings before being coupled into the fiber. Output pulses are characterized by use of an interferometric autocorrelator and a spectrum analyzer. PD, photodiode.

Fig. 2
Fig. 2

Pulse propagation in 5.5- and 10-µm core fiber as a function of average transmitted power. (a) Autocorrelation traces (left) and normalized spectrum (right) for the initial pulse. Interferometric traces are bold, derived intensity traces are lightface. Experimental (left) and simulated (middle) autocorrelations, and spectra (right, simulated spectra dashed) for (b) a 5.5-µm and (c) 10-µm core fiber at three different power levels. We adjusted the grating distance to minimize the output pulse width at low power.

Fig. 3
Fig. 3

Pulse broadening and spectral compression as a function of average transmitted power. FWHM of (a) intensity autocorrelation and (b) spectrum for a 5.5-µm core fiber (filled circles) and a 10-µm core fiber (open circles). The solid curves represent the numerical simulations.

Fig. 4
Fig. 4

Two-photon-induced photocurrent in a GaAsP photodiode as a function of average transmitted power for the 5.5-µm (filled circles) and the 10-µm fiber (open circles). (a) Log-log plot including the fiber data as well as photocurrents induced by direct coupling of 100-fs pulses and cw laser light, respectively. Note that photodiode saturation occurs at 300 µA. (b) Same data as in (a) shown as a linear-linear plot. The solid curves represent simulated curves that show the power dependence of two-photon absorption for the two fibers. The simulated curves were scaled to reproduce the data point at 160 mW for the 5.5-µm core fiber.

Metrics