Abstract

We report on the absolute calibration of photodetector quantum efficiency by using correlated photon sources, performed independently at two laboratories, the National Institute of Standards and Technology and the Istituto Elettrotecnico Nazionale (IEN). The goal is to use an interlaboratory comparison to demonstrate the inherent absoluteness of the photon correlation technique by showing its independence from the particular experimental setup. We find that detector nonuniformity limited this comparison rather than uncertainty inherent in the method itself. The ultimate goal of these investigations is development of a robust measurement protocol that allows the uncertainties of individual measurements to be determined experimentally and verified operationally. Furthermore, to demonstrate the generality of the procedure, the IEN measurement setup was also used to calibrate a fiber-coupled avalanche photodiode module. Uncertainties are evaluated for the detector both with and without fiber coupling and differences are discussed. The current IEN setup using a thinner and higher transmittance nonlinear crystal for the generation of correlated photons shows a significant improvement in overall accuracy with respect to previously reported results from IEN [Metrologia 32, 501–503 (1996)].

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
    [CrossRef]
  2. D. C. Burnham, D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  3. D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach Science Publishers, New York, 1988).
  4. V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
    [CrossRef]
  5. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, M. D. Petroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1853 (1994).
    [CrossRef] [PubMed]
  6. A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
    [CrossRef]
  7. G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
    [CrossRef]
  8. A. N. Penin, A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30, 3582–3588 (1991).
    [CrossRef] [PubMed]
  9. J. G. Rarity, K. D. Ridley, P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]
  10. B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST (Natl. Inst. Stand. Technol.) Tech. Note 1297 (1994).
  11. Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology or by the Istituto Elettrotecnico Nazionale, nor does it imply that the products are necessarily the best available for the purpose.
  12. A. Migdall, “Absolute quantum efficiency measurements using correlated photons: toward a measurement protocol,” IEEE Trans. Instrum. Meas. 50, 478–481 (2001).
    [CrossRef]
  13. I. P. Degiovanni, “Application of nonlinear optical effects to guantum radiometry,” Ph.D. Polytechnico of Turin, Turin, Italy, in preparation.
  14. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
    [CrossRef]
  15. G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
    [CrossRef]
  16. A. R. Schaefer, J. Geist, “Spatial uniformity of quantum efficiency of a silicon photovoltaic detector,” Appl. Opt. 18, 1933–1936 (1979).
    [CrossRef] [PubMed]
  17. G. Sauter, “Determination of measurement uncertainty in photometry,” to be published.

2001

A. Migdall, “Absolute quantum efficiency measurements using correlated photons: toward a measurement protocol,” IEEE Trans. Instrum. Meas. 50, 478–481 (2001).
[CrossRef]

2000

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

1998

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

1996

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

1994

1993

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

1991

1987

1979

1970

D. C. Burnham, D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Boeuf, N.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Branning, D.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Brida, G.

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

Burnham, D. C.

D. C. Burnham, D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Castelletto, S.

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

Chaperot, I.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Chiao, R. Y.

Datla, R. U.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Dauler, E.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Degiovanni, I. P.

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

I. P. Degiovanni, “Application of nonlinear optical effects to guantum radiometry,” Ph.D. Polytechnico of Turin, Turin, Italy, in preparation.

Eberhard, P. H.

Geist, J.

Ginzburg, V. M.

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

Godone, A.

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

Guerin, S.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Jaeger, G.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Keratishvili, N. G.

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach Science Publishers, New York, 1988).

Korzhenevich, Y. L.

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

Kuyatt, C. E.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST (Natl. Inst. Stand. Technol.) Tech. Note 1297 (1994).

Kwiat, P. G.

Lunev, G. V.

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

Migdall, A.

A. Migdall, “Absolute quantum efficiency measurements using correlated photons: toward a measurement protocol,” IEEE Trans. Instrum. Meas. 50, 478–481 (2001).
[CrossRef]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Migdall, A. L.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Muller, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Novero, C.

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

Orszak, J. S.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Penin, A. N.

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

A. N. Penin, A. V. Sergienko, “Absolute standardless calibration of photodetectors based on quantum two-photon fields,” Appl. Opt. 30, 3582–3588 (1991).
[CrossRef] [PubMed]

Petroff, M. D.

Rarity, J. G.

Rastello, M. L.

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

Ridley, K. D.

Sauter, G.

G. Sauter, “Determination of measurement uncertainty in photometry,” to be published.

Schaefer, A. R.

Sergienko, A.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Sergienko, A. V.

Shih, Y. H.

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

Steinberg, A. M.

Tapster, P. R.

Taylor, B. N.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST (Natl. Inst. Stand. Technol.) Tech. Note 1297 (1994).

Weinberg, D. L.

D. C. Burnham, D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

A. Migdall, “Absolute quantum efficiency measurements using correlated photons: toward a measurement protocol,” IEEE Trans. Instrum. Meas. 50, 478–481 (2001).
[CrossRef]

Metrologia

V. M. Ginzburg, N. G. Keratishvili, Y. L. Korzhenevich, G. V. Lunev, A. N. Penin, “Absolute measurement of quantum efficiency based on parametric downconversion effect,” Metrologia 30, 367–368 (1993).
[CrossRef]

G. Brida, S. Castelletto, I. P. Degiovanni, C. Novero, M. L. Rastello, “Quantum efficiency and dead time measurement of single-photon photodiodes: a comparison between two techniques,” Metrologia 37, 625–628 (2000).
[CrossRef]

A. L. Migdall, R. U. Datla, A. Sergienko, J. S. Orszak, Y. H. Shih, “Absolute detector quantum-efficiency measurements using correlated photons,” Metrologia 32, 479–483 (1996).
[CrossRef]

G. Brida, S. Castelletto, C. Novero, M. L. Rastello, “Measurement of quantum efficiency of photodetectors by parametric fluorescence,” Metrologia 35, 397–401 (1998).
[CrossRef]

S. Castelletto, A. Godone, C. Novero, M. L. Rastello, “Biphoton fields for quantum-efficiency measurements,” Metrologia 32, 501–503 (1996).
[CrossRef]

Opt. Eng.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, A. Migdall, “Calculating characteristics of noncollinear phase-matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[CrossRef]

Phys. Rev. Lett.

D. C. Burnham, D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Other

D. N. Klyshko, Photons and Nonlinear Optics (Gordon and Breach Science Publishers, New York, 1988).

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST (Natl. Inst. Stand. Technol.) Tech. Note 1297 (1994).

Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology or by the Istituto Elettrotecnico Nazionale, nor does it imply that the products are necessarily the best available for the purpose.

I. P. Degiovanni, “Application of nonlinear optical effects to guantum radiometry,” Ph.D. Polytechnico of Turin, Turin, Italy, in preparation.

G. Sauter, “Determination of measurement uncertainty in photometry,” to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for absolute quantum efficiency measurement comparison with correlated photons at 632.8 nm (DUT) and 789 nm (trigger): Ar+, pump laser at 351 nm, FDUT, Ftrigger, interference filters at 632.8 and 789 nm, respectively. Irises IDUT and Itrigger are set according to procedure. DUT was in turn NIST SPCM-AQ-231 and IEN SPCM-AQ-152. The box around the DUT and its optics indicates that is considered as a unit.

Fig. 2
Fig. 2

DUT-NIST quantum efficiency as the DUT-NIST is scanned radially across the cone of downconversion light in the IEN setup (●): The value of quantum efficiency is corrected for transmittance of the crystal, dark counts, and accidental counts. □, the DUT count rate.

Fig. 3
Fig. 3

Measurement of DUT-IEN performed at IEN as a trigger detector is moved (a) radially and (b) tangentially to the cone of downconverted light, while (c) and (d) show the same results except that the DUT is moved instead: ●, quantum efficiency, □, trigger count rate in (a) and (b) and the DUT count rate in (c) and (d).

Fig. 4
Fig. 4

Quantum efficiency (▲, ●) and DUT counts (△, ○) values for two tilting positions of the DUT-IEN detector as it is scanned radially.

Fig. 5
Fig. 5

(a) Apparent quantum efficiency of the DUT-NIST and its singles count rate shown as the DUT collection lens iris is varied with the trigger detector collection angle of 2.2 mrad. (b) Apparent quantum efficiency of the DUT and trigger singled count rate shown as the trigger collection lens iris is varied with the DUT detector collection angle fixed at 6.5 mrad. The quantum efficiency is not corrected for crystal losses.

Fig. 6
Fig. 6

Quantum efficiency of the DUT-NIST measured at IEN, ●, and its singles count rate, □, shown as the DUT collection lens iris is varied with the trigger detector collection angle of 2 mrad. Quantum efficiency is not corrected for crystal losses. The spot on the detector surface to be measured was not reproducibly chosen, so the difference in quantum efficiency maximums in this figure and that shown in Figs. 5(a) and 5(b) is most likely due to variations of quantum efficiency over the detector surface. As we see in Fig. 10 this variation can be large.

Fig. 7
Fig. 7

(a) Trigger, ●, and coincidence, ×, count rates shown as the pump polarization is rotated (in the NIST setup). The minimum trigger rate is 0.02% of the maximum signal (after subtracting for detector dark counts), while the coincidence rate falls to a level of 0.03%. (b) The same measurement performed at IEN yielding similar results.

Fig. 8
Fig. 8

(a) Stability of the quantum efficiency at one point on the detector surface as the trigger count rate falls, measured at NIST. This highlights the robustness of the quantum efficiency determination. The relative standard deviation of the quantum efficiency measurements was 0.3%. (b) Short-term measurement of DUT-IEN made at IEN. Here the 0.3% relative fluctuations are of the order of the estimated uncertainty, meaning that trigger- count drifts have little effect on the measurement.

Fig. 9
Fig. 9

Variation of quantum efficiency, ●, and DUT-NIST count rate, □, as the package filter-lens-detector is tilted (measured in the IEN setup).

Fig. 10
Fig. 10

Spatial maps of (a) quantum efficiency and (b) raw counts at 633 nm (these efficiencies include crystal transmittance losses) as DUT-NIST was scanned across the downconverted light beam at NIST.

Tables (2)

Tables Icon

Table 1 Uncertainty Budget for Calibrations of DUT-NIST and DUT-IEN Made in an IEN Setupa

Tables Icon

Table 2 Uncertainty Budget for Calibrations of DUT-NIST Performed in the NIST and IEN Setups

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ωp=ωs+ωi, kp=ks+ki,
NA=ηAN, NB=ηBN,
NC=ηAηBN,
ηA= NCNB, ηB= NCNA.
ηDUT= 1TBNCNtrigger,
ρNtrigger, NC= NCNtrigger-NCNtriggeru2NCu2Ntrigger1/2,

Metrics