Abstract

An optimization strategy for a generic absorption-based optical chemical sensor that employs a single-reflection planar configuration is reported. A theoretical model describing the sensor sensitivity is presented and verified experimentally. It is shown that optimum sensitivity is not achieved with an evanescent-wave sensing technique but with a configuration in which the interrogating light propagates within the sensing layer. Moreover, an optimization strategy based on identification of an optimized reflection angle is described. This analysis provides an optimization strategy that is extendable to multimode waveguide platforms. The predictions of the model are used in the design of a prototype LED-based sensor system. The performance of this system is examined, and the results are compared with alternative absorption-based sensor configurations.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995).
    [CrossRef]
  2. M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
    [CrossRef]
  3. S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
    [CrossRef]
  4. R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993).
    [CrossRef]
  5. H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
    [CrossRef]
  6. K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
    [CrossRef]
  7. H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999).
    [CrossRef]
  8. O. Parriaux, G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16, 573–582 (1998).
    [CrossRef]
  9. J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994).
    [CrossRef]
  10. L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
    [CrossRef]
  11. K. Ohta, H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990).
    [CrossRef] [PubMed]
  12. S. Ekgasit, H. Ishida, “Optical depth profiling by attenuated total reflection Fourier transform infrared spectroscopy: a new approach,” Appl. Spectrosc. 50, 1187–1195 (1996).
    [CrossRef]
  13. C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
    [CrossRef]
  14. T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995).
    [CrossRef]

2000 (1)

C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
[CrossRef]

1999 (1)

H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999).
[CrossRef]

1998 (1)

1997 (2)

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

1996 (2)

S. Ekgasit, H. Ishida, “Optical depth profiling by attenuated total reflection Fourier transform infrared spectroscopy: a new approach,” Appl. Spectrosc. 50, 1187–1195 (1996).
[CrossRef]

L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
[CrossRef]

1995 (1)

L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

1994 (1)

J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994).
[CrossRef]

1993 (1)

R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993).
[CrossRef]

1992 (1)

S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

1990 (2)

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

K. Ohta, H. Ishida, “Matrix formalism for calculation of electric field intensity of light in stratified multilayered films,” Appl. Opt. 29, 1952–1959 (1990).
[CrossRef] [PubMed]

Armstrong, N. R.

L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
[CrossRef]

Burgess, L. W.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

Butler, T. M.

C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
[CrossRef]

T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995).
[CrossRef]

Choquette, S. J.

S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

DeGrandpre, M. D.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

Durst, R. A.

S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

Ekgasit, S.

Goldman, D. S.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

Hisamoto, H.

H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999).
[CrossRef]

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

Ishida, H.

Kang, S.

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

Kim, K.

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

Kim, K. H.

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

Klein, R.

R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993).
[CrossRef]

Lee, J. E.

J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994).
[CrossRef]

Locascio-Brown, L.

S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

MacCraith, B. D.

C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
[CrossRef]

T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995).
[CrossRef]

Malins, C.

C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
[CrossRef]

Manabe, Y.

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

McDonagh, C. M.

T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995).
[CrossRef]

Minamitani, H.

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

Ohta, K.

Parriaux, O.

Saavedra, S. S.

L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
[CrossRef]

J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994).
[CrossRef]

Sasaki, K.

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

Scott Saavedra, S.

L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

Suzuki, K.

H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999).
[CrossRef]

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

Veldhuis, G. J.

Voges, E.

R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993).
[CrossRef]

White, P. L.

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

Yang, L.

L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
[CrossRef]

L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

Anal. Chem. (4)

L. Yang, S. Scott Saavedra, “Chemical sensing using solgel-derived planar waveguides and indicator phases,” Anal. Chem. 67, 1307–1314 (1995).
[CrossRef]

M. D. DeGrandpre, L. W. Burgess, P. L. White, D. S. Goldman, “Thin film planar waveguide sensor for liquid phase absorbance measurements,” Anal. Chem. 62, 2012–2017 (1990).
[CrossRef]

S. J. Choquette, L. Locascio-Brown, R. A. Durst, “Planar waveguide immunosensor with fluorescent liposome amplification,” Anal. Chem. 64, 55–60 (1992).
[CrossRef]

L. Yang, S. S. Saavedra, N. R. Armstrong, “Solgel-based planar waveguide sensor for gaseous iodine,” Anal. Chem. 68 (11), 1834–1841 (1996).
[CrossRef]

Anal. Chim. Acta (3)

H. Hisamoto, K. H. Kim, Y. Manabe, K. Sasaki, H. Minamitani, K. Suzuki, “Ion-sensitive and selective active waveguide optodes,” Anal. Chim. Acta 342, 31–39 (1997).
[CrossRef]

K. Kim, H. Minamitani, H. Hisamoto, K. Suzuki, S. Kang, “Active optical thin-film waveguide sensor for ion sensing,” Anal. Chim. Acta 343, 199–208 (1997).
[CrossRef]

J. E. Lee, S. S. Saavedra, “Evanescent sensing in doped solgel glass films,” Anal. Chim. Acta 285 (3), 265–269 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

Sens. Actuators B (1)

R. Klein, E. Voges, “Integrated-optic ammonia sensor,” Sens. Actuators B 11, 221–225 (1993).
[CrossRef]

Thin Solid Films (1)

C. Malins, T. M. Butler, B. D. MacCraith, “Influence of the surface polarity of dye-doped solgel glass films on optical ammonia sensor response,” Thin Solid Films 368, 105–110 (2000).
[CrossRef]

Trends Anal. Chem. (1)

H. Hisamoto, K. Suzuki, “Ion-selective optides: current developments and future prospects,” Trends Anal. Chem. 18, 513–524 (1999).
[CrossRef]

Other (1)

T. M. Butler, B. D. MacCraith, C. M. McDonagh, “Development of an extended range fiber optic pH sensor using evanescent wave absorption of solgel entrapped pH indicators,” in Chemical, Biochemical, and Environmental Fiber Sensors VII, A. V. Scheggi, ed., Proc. SPIE2508, 168–178 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of operation of an absorption-based optical sensor employing a multimode planar waveguide platform. See text for explanation of the symbols.

Fig. 2
Fig. 2

Theoretical curves of the angular dependence of reflectivity R and the function = dR/dγ s calculated for the environmental refractive index, n e = 1.0, and the sensing layer thickness, t s = 0.3 µm: 1, 2, extinction coefficient of the sensing layers γ s = 0.0005 and γ s = 0.0025, respectively, solid and dashed curves, TE and TM polarizations, respectively. The values of the remaining parameters and the meaning of regions A, B, and C are discussed in the text.

Fig. 3
Fig. 3

Reflectivity and sensitivity curves as in Fig. 2, except that t s = 0.8 µm.

Fig. 4
Fig. 4

Reflectivity and sensitivity curves as in Fig. 2, except that n e = 1.33 and t s = 0.3 µm.

Fig. 5
Fig. 5

Reflectivity and sensitivity curves as in Fig. 2, except that n e = 1.33 and t s = 0.8 µm.

Fig. 6
Fig. 6

Examples of the electromagnetic field distribution (|E| 2) across the sensing element for (a) optimum and (b) typically used evanescent-wave sensing configurations. The parameters of the guiding structure are discussed in the text. When the field is normalized so that the field magnitude in the guiding layer is unity, the distributions look as shown in (c).

Fig. 7
Fig. 7

Comparison of (θ) for both a laser and LED light sources. In the calculation the wavelength of the monochromatic source was λ = 543.5 nm, while the spectrum of the LED was characterized by λmax = 570 nm and a FWHM of 40 nm (see the corresponding spectra in the inset). The values of the optical parameters considered were n e = 1.0, n s = 1.43, λ s = 0.0005, t s = 0.8 µm, n g = 1.515. The light was considered to be unpolarized for both sources.

Fig. 8
Fig. 8

Example of pairs [t s , θmax] corresponding to a configuration with optimum sensitivity: solid and dashed curves, TE and TM polarizations; x, ○, environment refractive indices n e = 1.0 and n e = 1.33, respectively. Values of the remaining parameters are discussed in the text.

Fig. 9
Fig. 9

Schematic of the laser-based experimental setup used as a single-reflection absorption-based optical sensor system.

Fig. 10
Fig. 10

(a) Angular distributions of reflectivity obtained by the experimental setup in Fig. 9. The experimental data correspond to ammonia concentrations of, ×, 0 ppm and, 0, 2 ppm. The sensitivity shown in (b) was calculated as a difference R[ c A1] - R[ c A2]. The quantities are plotted in arbitrary units because the experimental configuration made it difficult to measure the absolute value of the input power. The solid curves correspond to the fits of the experimental points by the theoretical model expressed by function (1).

Fig. 11
Fig. 11

Schematic of the LED-based prototype sensor system using a single-reflection configuration. The apertures (A) in front of the LED and photodetector allow only the light within the angular width of ≈8° to interrogate the sensing layer and be detected.

Fig. 12
Fig. 12

Response of the LED-based prototype sensor system to various pH buffer solutions.

Fig. 13
Fig. 13

Calibration curve of the LED-based prototype sensor system for NH3 in N2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=Rng, ns, ne; ts, λ, θ; γscA.

Metrics