Abstract

A numerical simulation of pulsed cavity ring-down spectroscopy (CRDS) is developed with the commercially available software package general laser analysis and design. The model is verified through a series of numerical experiments. Several issues of concern in CRDS are investigated, including spatial resolution, misalignment, non-Gaussian beam input, and the effect of flames inside a ring-down cavity. Suggestions for the design of pulsed CRDS instruments are provided.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988).
    [CrossRef]
  2. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  3. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
    [CrossRef]
  4. S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energy Combust. Sci. 25, 233–252 (1999).
    [CrossRef]
  5. R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
    [CrossRef]
  6. X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
    [CrossRef]
  7. J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000).
    [CrossRef]
  8. C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
    [CrossRef]
  9. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
    [CrossRef]
  10. G. N. Lawrence, “General Laser Analysis and Design theoretical description,” Applied Optics Research, Woodland, Wash. See http://www.aor.com .
  11. A. E. Siegman, Lasers, 1st ed. (University Science, Sausalito, Calif.1986).
  12. R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
    [CrossRef]
  13. J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
    [CrossRef]
  14. X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
    [CrossRef]
  15. I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
    [CrossRef]
  16. V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
    [CrossRef]
  17. A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
    [CrossRef]
  18. M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995).
    [CrossRef]
  19. P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  20. R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
    [CrossRef]
  21. J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
    [CrossRef]
  22. J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
    [CrossRef]
  23. J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997).
    [CrossRef]
  24. A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
    [CrossRef]
  25. P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
    [CrossRef]
  26. R. Weast, Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).
  27. A. McIlroy, Sandia National Laboratories Mail Stop 9055, Livermore, Calif. 94551-0969 (personal communication, 2001).
  28. S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

2001

C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
[CrossRef]

2000

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000).
[CrossRef]

1999

S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energy Combust. Sci. 25, 233–252 (1999).
[CrossRef]

R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

1998

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

1997

J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
[CrossRef]

J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997).
[CrossRef]

V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

1996

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
[CrossRef]

1995

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995).
[CrossRef]

P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

1994

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

1993

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

1988

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988).
[CrossRef]

Boogaarts, M.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Boogaarts, M. G. H.

M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Brockhinke, A.

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Cheskis, S.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energy Combust. Sci. 25, 233–252 (1999).
[CrossRef]

V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

Dadamio, J.

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988).
[CrossRef]

Derzy, I.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

Desgroux, P.

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Dreyer, C. B.

C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
[CrossRef]

Evertsen, R.

R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
[CrossRef]

Harris, J. S.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Hill, E. S.

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

Hodges, J. T.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
[CrossRef]

Hollwman, I.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Jamette, P.

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Jongma, R.

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Jongma, R. T.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Kohse-Höinghaus, K.

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Kruger, C.

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Kruger, C. H.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Linne, M.

C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
[CrossRef]

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Linne, M. A.

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

Looney, J. P.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
[CrossRef]

Lozovsky, V.

V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

Lozovsky, V. A.

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

Ma, Y.

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Martin, J.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

McIlroy, A.

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000).
[CrossRef]

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

A. McIlroy, Sandia National Laboratories Mail Stop 9055, Livermore, Calif. 94551-0969 (personal communication, 2001).

Meijer, G.

J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
[CrossRef]

M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995).
[CrossRef]

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Mercier, X.

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988).
[CrossRef]

Owano, T.

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Owano, T. G.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

Paldus, B. A.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Parker, D.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

Paul, J. B.

J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997).
[CrossRef]

Pauwels, J. F.

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

Romanini, D.

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Sappey, A. D.

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

Saykally, R. J.

J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997).
[CrossRef]

Schocker, A.

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Settersten, T.

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers, 1st ed. (University Science, Sausalito, Calif.1986).

Spaanjaars, J. J. L.

J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
[CrossRef]

Spuler, S.

C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
[CrossRef]

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Stolk, R. L.

R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
[CrossRef]

Ter Meulen, J. J.

R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
[CrossRef]

J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
[CrossRef]

Therssen, E.

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

Thoman, J. W.

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000).
[CrossRef]

van Zee, R. D.

R. D. van Zee, J. T. Hodges, J. P. Looney, “Pulsed, single-mode cavity ringdown spectroscopy,” Appl. Opt. 38, 3951–3960 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
[CrossRef]

Wahl, E.

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Wahl, E. H.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

Weast, R.

R. Weast, Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).

Xie, J.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

Zalicki, P.

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R.

P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

Zare, R. N.

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

Anal. Chem. News Features

J. B. Paul, R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Anal. Chem. News Features 69A, 287–292 (1997).
[CrossRef]

Appl. Opt.

Chem. Phys. Lett.

A. McIlroy, “Direct measurement of 1CH2 in flames by cavity ringdown laser absorption spectroscopy,” Chem. Phys. Lett. 296, 151–158 (1998).
[CrossRef]

P. Zalicki, Y. Ma, R. Zare, E. Wahl, J. Dadamio, T. Owano, C. Kruger, “Methyl radical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995).
[CrossRef]

J. Xie, B. A. Paldus, E. H. Wahl, J. Martin, T. G. Owano, C. H. Kruger, J. S. Harris, R. N. Zare, “Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame,” Chem. Phys. Lett. 284, 387–395 (1998).
[CrossRef]

J. Martin, B. A. Paldus, P. Zalicki, E. Wahl, T. Owano, J. S. Harris, C. H. Kruger, R. N. Zare, “Cavity ring-down spectroscopy with Fourier-transform-limited light pulses,” Chem. Phys. Lett. 258, 63–70 (1996).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. Parker, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112–116 (1994).
[CrossRef]

X. Mercier, E. Therssen, J. F. Pauwels, P. Desgroux, “Cavity ring-down measurements of OH radical in atmospheric premixed and diffusion flames. A comparison with laser-induced fluorescence and direct laser absorption,” Chem. Phys. Lett. 299, 75–83 (1999).
[CrossRef]

X. Mercier, P. Jamette, J. F. Pauwels, P. Desgroux, “Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric flame,” Chem. Phys. Lett. 305, 334–342 (1999).
[CrossRef]

I. Derzy, V. A. Lozovsky, S. Cheskis, “Absorption cross-sections and absolute concentration of singlet methylene in methane/air,” Chem. Phys. Lett. 313, 121–128 (1999).
[CrossRef]

Combust. Sci. Technol.

R. Evertsen, R. L. Stolk, J. J. Ter Meulen, “Investigations of cavity ring down spectroscopy applied to the detection of CH in atmospheric flames,” Combust. Sci. Technol. 149, 19–34 (1999).
[CrossRef]

C. B. Dreyer, S. Spuler, M. Linne, “Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric flames,” Combust. Sci. Technol. 171, 1–29 (2001).
[CrossRef]

J. Chem. Phys.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278–10288 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

V. Lozovsky, S. Cheskis, “Absolute HCO concentration measurements in methane/air flame using intracavity laser spectroscopy,” J. Chem. Phys. 106, 8384–8391 (1997).
[CrossRef]

M. G. H. Boogaarts, G. Meijer, “Measurement of the beam intensity in a laser desorption jet-cooling mass spectrometer,” J. Chem. Phys. 103, 5269–5274 (1995).
[CrossRef]

P. Zalicki, R. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. J. L. Spaanjaars, J. J. ter Meulen, G. Meijer, “Relative predissociation rates of OH (A2 ∑+, v′ = 3) from combined cavity ring down–laser-induced fluorescence measurements,” J. Chem. Phys. 107, 2242–2248 (1997).
[CrossRef]

J. Phys. Chem.

J. W. Thoman, A. McIlroy, “Absolute CH radical concentrations in rich low-pressure methane-oxygen-argon flames via cavity ringdown spectroscopy of the A2Δ-X2Π transition,” J. Phys. Chem. 104, 4953–4961 (2000).
[CrossRef]

Opt. Lett.

A. D. Sappey, E. S. Hill, T. Settersten, M. A. Linne, “Fixed frequency cavity ringdown diagnostic for atmospheric particulate matter,” Opt. Lett. 12, 954–956 (1998).
[CrossRef]

Prog. Energy Combust. Sci.

S. Cheskis, “Quantitative measurements of absolute concentrations of intermediate species in flames,” Prog. Energy Combust. Sci. 25, 233–252 (1999).
[CrossRef]

Rev. Sci. Instrum.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 12, 2544–2551 (1988).
[CrossRef]

R. Jongma, M. Boogaarts, I. Hollwman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Other

G. N. Lawrence, “General Laser Analysis and Design theoretical description,” Applied Optics Research, Woodland, Wash. See http://www.aor.com .

A. E. Siegman, Lasers, 1st ed. (University Science, Sausalito, Calif.1986).

R. Weast, Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, Fla., 1997).

A. McIlroy, Sandia National Laboratories Mail Stop 9055, Livermore, Calif. 94551-0969 (personal communication, 2001).

S. Spuler, M. Linne, A. Schocker, A. Brockhinke, K. Kohse-Höinghaus, “Measurements of CH2 and HCO radicals in low-pressure flames by cavity ringdown laser absorption spectroscopy,” presented at the Spring 2000 Meeting of the Western States Section of the Combustion Institute, Colorado School of Mines, Golden, Colo., 13–14 March 2000, WSS/CI paper 00S-3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Stability diagram for a two-mirror optical resonator (adapted from Fig. 19.4 of Siegman11).

Fig. 2
Fig. 2

Gaussian input: beam size with perfect mode matching. w 0 is the beam size at the center of the cavity, and w 1 = w 2 is the beam size at the cavity mirrors (adapted from Fig. 19.6 of Siegman11).

Fig. 3
Fig. 3

Results of the diffraction loss model: power loss per pass (measured in decibels) versus the Fresnel number.

Fig. 4
Fig. 4

Spatial-mode beat frequency calculated via a discrete FFT of an obscured ring-down waveform in a degenerate cavity (magic number 4).

Fig. 5
Fig. 5

Ring-down decay waveforms. Model input: L = 53.0 cm, R 1 = flat, R 2 = 200 cm, super-Gaussian (n = 3) input-beam size 288 µm and phase radius -200 cm, mirror reflectivity 99.1%, absorption path length l = 3 cm, αl = 0.0012, and λ = 216.6 nm.

Fig. 6
Fig. 6

Beam types used as model input.

Fig. 7
Fig. 7

Beam size as a function of number of single passes in the cavity. The single-pass trips in the cavity can be thought of as sections of an iterated periodic lensguide, with reflection from the finite-aperture cavity mirrors being replaced by transmission through equivalent finite-aperture lens having the same focal power (1, 2, 3, etc. can be thought of as mirror–lens interactions). (a) An exact mode match, (b) a mismatched beam size, and (c) mismatched phase radius of curvature. Model input: L = 195 cm, R = 100 cm, and g = -0.95.

Fig. 8
Fig. 8

Sensitivity to mode-matching beam size with Gaussian beam input. ROC, radius of curvature.

Fig. 9
Fig. 9

Sensitivity to mode-matching phase radius of curvature with Gaussian beam input.

Fig. 10
Fig. 10

Attempt to mode match with super-Gaussian beams.

Fig. 11
Fig. 11

Simulated beam images (size shown by error bars) calculated at the output mirror over 0.5 µs for aligned and misaligned (5 × 10-3-deg horizontal mirror tilt and 1 × 10-3-deg input-beam angle) cavities. Model input: L = 72.5 cm, R = 600 cm, super-Gaussian (n = 3) input-beam size 456 µm and phase radius -600 cm, mirror reflectivity 99.995%, and λ = 430 nm.

Fig. 12
Fig. 12

Effects of misalignment with mode-matched Gaussian beam input.

Fig. 13
Fig. 13

Index and temperature as a function of radial position in atmospheric-pressure postflame gases.

Fig. 14
Fig. 14

Increase in beam size as a function of mirror radius of curvature, R, when atmospheric-pressure postflame gases (index change modeled as thin spherical lens) are placed at the cavity center. Parameters: mode-matched Gaussian beam input, g = 0.5.

Fig. 15
Fig. 15

Simple thick-lens model of atmospheric-pressure postflame region.

Fig. 16
Fig. 16

Atmospheric-pressure postflame temperature gradient modeled as a thick lens. Beam size at the lens edge as a function of g and R. Both the Gaussian and super-Gaussian input were exactly mode matched to the empty cavity. Solid curves show an increase in beam size at the cavity center. The dotted curve indicates the mirror radius of curvature for the corresponding g parameter. Cavity length for all cases equals 20 cm.

Tables (2)

Tables Icon

Table 1 Cavity Geometry Utilized by the Pulsed CRDS Community

Tables Icon

Table 2 Transverse-Mode Frequency for Degenerate Cavities

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A¯z=-i12k 2A¯-iμω22kP¯,
ΔAdiffraction  -i12k 2AΔz,
ΔAmedium  -iμω22k PΔz=-ikχ2n2 AΔz,
g1  1-LR1, g2  1-LR2,
w02=Lλπ1+g41-g1/2, w12=w22=Lλπ11-g21/2,
Nf  a2/Lλ,
ν=q+n+m+1cos-1gπc2L,
Er=exp-r2w2n, n2,

Metrics