Abstract

Two Fourier transform infrared intensity artifacts have been observed at moderately high (0.1 cm-1) spectral resolution: Light reflected off the aperture was double modulated by the interferometer, producing a 2f alias, and the warm (≈310 K) annulus of the aperture seen by a cooled detector resulted in distorted line shapes and anomalous intensities in the fingerprint region. Although the second artifact has been alluded to previously, we report corrections to remove both of these anomalies and to demonstrate the efficacy of these corrections. Prior to correction, integrated-band intensities were found to be in error by up to 12%.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  2. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).
  3. P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
    [CrossRef]
  4. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
    [CrossRef]
  5. These data are available at http://www.gases.nist.gov/database.html .
  6. These data are available at http://nwir.pnl.gov .
  7. J. W. Johns, “High resolution and the accurate measurement of intensities,” Mikrochim. Acta 111, 171–188 (1987).
    [CrossRef]
  8. L. Mertz, “Auxiliary computation for Fourier spectrometry,” Inf. Phys. 7, 17–23 (1967).
    [CrossRef]
  9. D. B. Chase, “Phase correction in FT-IR,” Appl. Spectrosc. 36, 240–244 (1982).
    [CrossRef]
  10. R. C. M. Learner, A. P. Thorne, J. W. Brault, “Ghosts and artifacts in Fourier-transform spectrometry,” Appl. Opt. 35, 2947–2954 (1996).
    [CrossRef] [PubMed]
  11. D. B. Chase, “Nonlinear detector response and FT-IR,” Appl. Spectrosc. 38, 491–494 (1984).
    [CrossRef]
  12. M. Birk, D. Hausamann, G. Wagner, J. W. Johns, “Determination of line strengths by Fourier-transform spectroscopy,” Appl. Opt. 35, 2971–2985 (1996).
    [CrossRef] [PubMed]
  13. J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
    [CrossRef]
  14. M. C. Abrams, G. C. Toon, R. A. Schindler, “Practical example of the correction of Fourier-transform spectra for detector non-linearity,” Appl. Opt. 33, 6307–6314 (1994).
    [CrossRef] [PubMed]
  15. A. Keens, A. Simon, “Corrections of non-linearities in detectors in Fourier transform spectroscopy,” U.S. patent4,927,269 (22May1990).
  16. R. L. Richardson, P. R. Griffiths, “Evaluation of a system for generating quantitatively accurate vapor-phase infrared spectra,” Appl. Spectrosc. 52, 143–153 (1998).
    [CrossRef]
  17. G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. A. Vanasse, ed. (Academic, New York, 1981).
  18. J. R. Birch, F. J. J. Clarke, “Fifty categories of ordinate error in Fourier transform spectroscopy,” Spectrosc. Europe 7, 16–22 (1995).
  19. J. W. Johns, “Thermal artifacts in mid- to far-IR FT spectroscopy,” in Fourier Transform Spectroscopy: New Methods and Applications, Vol. 4 of 1995 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1995), pp. 26–27.
  20. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are the best available for the purpose.
  21. T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”
  22. J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
    [CrossRef]
  23. L. P. Giver, C. Chackerian, M. N. Spencer, “Thermal contamination of BOMEM FTIR line shapes,” in High Resolution Fourier Transform Spectroscopy, Vol. 21 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp.96–97.
  24. H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
    [CrossRef]
  25. J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
    [CrossRef]
  26. J. R. Birch, E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27, 159–165 (1987).
    [CrossRef]

2000

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

1999

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

1998

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

R. L. Richardson, P. R. Griffiths, “Evaluation of a system for generating quantitatively accurate vapor-phase infrared spectra,” Appl. Spectrosc. 52, 143–153 (1998).
[CrossRef]

1996

1995

J. R. Birch, F. J. J. Clarke, “Fifty categories of ordinate error in Fourier transform spectroscopy,” Spectrosc. Europe 7, 16–22 (1995).

1994

1992

J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
[CrossRef]

1987

J. R. Birch, E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27, 159–165 (1987).
[CrossRef]

J. W. Johns, “High resolution and the accurate measurement of intensities,” Mikrochim. Acta 111, 171–188 (1987).
[CrossRef]

1984

1982

1980

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

1967

L. Mertz, “Auxiliary computation for Fourier spectrometry,” Inf. Phys. 7, 17–23 (1967).
[CrossRef]

Abrams, M. C.

Ballard, J.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

Bertie, J. E.

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

Beukes, J. A.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Birch, J. R.

J. R. Birch, F. J. J. Clarke, “Fifty categories of ordinate error in Fourier transform spectroscopy,” Spectrosc. Europe 7, 16–22 (1995).

J. R. Birch, E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27, 159–165 (1987).
[CrossRef]

Birk, M.

Blake, T. A.

T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”

Brault, J. W.

Chackerian, C.

L. P. Giver, C. Chackerian, M. N. Spencer, “Thermal contamination of BOMEM FTIR line shapes,” in High Resolution Fourier Transform Spectroscopy, Vol. 21 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp.96–97.

Chase, D. B.

Christensen, L. K.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Chu, P. M.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Clarke, F. J. J.

J. R. Birch, F. J. J. Clarke, “Fifty categories of ordinate error in Fourier transform spectroscopy,” Spectrosc. Europe 7, 16–22 (1995).

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).

Di Lonardo, G.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Duxbury, G.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Freckleton, R.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Giver, L. P.

L. P. Giver, C. Chackerian, M. N. Spencer, “Thermal contamination of BOMEM FTIR line shapes,” in High Resolution Fourier Transform Spectroscopy, Vol. 21 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp.96–97.

Griffiths, P. R.

Guelachvili, G.

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. A. Vanasse, ed. (Academic, New York, 1981).

Guenther, F. R.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Hausamann, D.

Herman, M.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Johns, J. W.

M. Birk, D. Hausamann, G. Wagner, J. W. Johns, “Determination of line strengths by Fourier-transform spectroscopy,” Appl. Opt. 35, 2971–2985 (1996).
[CrossRef] [PubMed]

J. W. Johns, “Thermal artifacts in mid- to far-IR FT spectroscopy,” in Fourier Transform Spectroscopy: New Methods and Applications, Vol. 4 of 1995 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1995), pp. 26–27.

Johnson, T. J.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Jongbloetts, H. W. H. M.

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

Keens, A.

A. Keens, A. Simon, “Corrections of non-linearities in detectors in Fourier transform spectroscopy,” U.S. patent4,927,269 (22May1990).

Knight, R. J.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Lafferty, W. J.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

Learner, R. C. M.

Masciarelli, G.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

McPheat, R.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Mertz, L.

L. Mertz, “Auxiliary computation for Fourier spectrometry,” Inf. Phys. 7, 17–23 (1967).
[CrossRef]

Newnham, D. A.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Nicol, E. A.

J. R. Birch, E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27, 159–165 (1987).
[CrossRef]

Nicolaisen, F. M.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Remedios, J. J.

J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
[CrossRef]

Rhoderick, G. C.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Richardson, R. L.

Roscoe, H. K.

J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
[CrossRef]

Sams, R. L.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”

Schindler, R. A.

Sharpe, S. W.

T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Shine, K. P.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

Simon, A.

A. Keens, A. Simon, “Corrections of non-linearities in detectors in Fourier transform spectroscopy,” U.S. patent4,927,269 (22May1990).

Spencer, M. N.

L. P. Giver, C. Chackerian, M. N. Spencer, “Thermal contamination of BOMEM FTIR line shapes,” in High Resolution Fourier Transform Spectroscopy, Vol. 21 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp.96–97.

Stoelinga, J. H. M.

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

Thorne, A. P.

Toon, G. C.

van de Steeg, M. J. H.

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

van der Werf, E. J. C. M.

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

Vander Auwera, J.

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

W. Johns, J.

J. W. Johns, “High resolution and the accurate measurement of intensities,” Mikrochim. Acta 111, 171–188 (1987).
[CrossRef]

Wagner, G.

Wyder, P.

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

Xantheas, S. S.

T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”

Appl. Opt.

Appl. Spectrosc.

Inf. Phys.

L. Mertz, “Auxiliary computation for Fourier spectrometry,” Inf. Phys. 7, 17–23 (1967).
[CrossRef]

H. W. H. M. Jongbloetts, M. J. H. van de Steeg, E. J. C. M. van der Werf, J. H. M. Stoelinga, P. Wyder, “Spectrum distortion of far-infrared Fourier spectroscopy by multiple reflections between sample and Michelson interferometer,” Inf. Phys. 20, 185–192 (1980).
[CrossRef]

Infrared Phys.

J. R. Birch, E. A. Nicol, “The removal of detector port radiation effects in power transmission or reflection Fourier transform spectroscopy,” Infrared Phys. 27, 159–165 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. Ballard, R. J. Knight, D. A. Newnham, J. Vander Auwera, M. Herman, G. Di Lonardo, G. Masciarelli, F. M. Nicolaisen, J. A. Beukes, L. K. Christensen, R. McPheat, G. Duxbury, R. Freckleton, K. P. Shine, “An intercomparison of laboratory measurements of absorption cross-sections and integrated absorption intensities for HCFC-22,” J. Quant. Spectrosc. Radiat. Transfer 66, 109–128 (2000).
[CrossRef]

J. Ballard, J. J. Remedios, H. K. Roscoe, “Sample emission effect on spectral parameters,” J. Quant. Spectrosc. Radiat. Transfer 48, 733–741 (1992).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST Quantitative Infrared Database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

Mikrochim. Acta

J. W. Johns, “High resolution and the accurate measurement of intensities,” Mikrochim. Acta 111, 171–188 (1987).
[CrossRef]

Pure Appl. Chem.

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

Spectrosc. Europe

J. R. Birch, F. J. J. Clarke, “Fifty categories of ordinate error in Fourier transform spectroscopy,” Spectrosc. Europe 7, 16–22 (1995).

Other

J. W. Johns, “Thermal artifacts in mid- to far-IR FT spectroscopy,” in Fourier Transform Spectroscopy: New Methods and Applications, Vol. 4 of 1995 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1995), pp. 26–27.

Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are the best available for the purpose.

T. A. Blake, R. L. Sams, S. W. Sharpe, S. S. Xantheas are preparing a manuscript called “High resolution infrared spectroscopy of perfluorocyclobutane in the 1200 to 1300 cm-1 region.”

L. P. Giver, C. Chackerian, M. N. Spencer, “Thermal contamination of BOMEM FTIR line shapes,” in High Resolution Fourier Transform Spectroscopy, Vol. 21 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp.96–97.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-Based Sensor Systems, S. D. Christensen, A. J. Sedlacek, eds. Proc. SPIE4577, 12–24 (2001).
[CrossRef]

These data are available at http://www.gases.nist.gov/database.html .

These data are available at http://nwir.pnl.gov .

G. Guelachvili, “Distortions in Fourier spectra and diagnosis,” in Spectrometric Techniques, G. A. Vanasse, ed. (Academic, New York, 1981).

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).

A. Keens, A. Simon, “Corrections of non-linearities in detectors in Fourier transform spectroscopy,” U.S. patent4,927,269 (22May1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral effect of double modulation or “aperture ghosting” that is due to a reflection off the back side of the aperture. The light passes the interferometer twice and shows up at twice its natural frequency. The derivative-type excursions are due to double modulation; the positive features are the molecular overtones.

Fig. 2
Fig. 2

Optical path of the Bruker IFS 66v spectrometer before and after modification: The default IR optical path for the IFS66v is shown as a dashed line, with mirror A flipped from the path, paraboloid mirror B used to focus the IR into the sample compartment, and ellipsoid C used to focus the beam onto the deuterated tri-glycerol sulfide detector. As shown by the solid lines, the beam path after modification focuses the IR beam through a second aperture (APT2) outside the spectrometer. After recollimation the parallel beam is steered to the optional MCT detector. Not apparent is that the first aperture (APT1) has been black anodized, and the second aperture has a conical surface on the side facing the interferometer.

Fig. 3
Fig. 3

Single-beam spectra showing the effect of thermal contribution from the aperture with a 1.5-mm iris. Lower frame: upper trace, source on without second aperture; lower trace, source off without second aperture. The upper frame shows the effect of adding the second aperture, as both are source off spectra: upper trace, same spectrum of source-off without second aperture; lower trace, source-off with second aperture installed. Note the change in y-axis scales between the lower and upper traces.

Fig. 4
Fig. 4

Absorbance spectra of C2H4 in the MWIR and LWIR (fingerprint) regions showing the effect of the warm aperture. The two lower traces correspond to individual ethene absorption lines before (dashed curves) and after (solid curves) installation of the second aperture. The two upper traces correspond to residuals of the same lines where the residual is defined as “before second aperture” minus “after second aperture.” Note the significant increase in residuals at the lower frequencies.

Tables (1)

Tables Icon

Table 1 Absolute Band Area, Taking into Account Baseline Non-Zero

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d = 22*f*Δσ/σmax1/2.

Metrics