Abstract

Input grating couplers are used to couple light from free space into a waveguide and can provide additional functions such as focusing and beam splitting of the light into arbitrary desired positions in the waveguide. We show that it is possible to design the couplers so that they perform different desired functions depending on the polarization or wavelength of the incident light. We demonstrate experimentally a number of couplers that may be of interest, e.g., in optical fiber communications. Examples are polarization-independent couplers, designed to have the same response for two orthogonal polarizations of the incident light, and couplers for demultiplexing in wavelength division multiplexing applications, designed to separate and focus different input wavelengths to different positions in the waveguide.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  2. T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986).
    [CrossRef]
  3. J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
    [CrossRef]
  4. M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  5. C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
    [CrossRef]
  6. M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
    [CrossRef]
  7. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).
  8. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  9. L. M. Walpita, “Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix,” J. Opt. Soc. Am. A 2, 595–602 (1985).
    [CrossRef]
  10. J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
    [CrossRef]
  11. J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879–6884 (1994).
    [CrossRef] [PubMed]
  12. C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
    [CrossRef]
  13. M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
    [CrossRef]
  14. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [CrossRef]
  15. P. G. Dinesen, J. S. Hesthaven, J. P. Lynov, L. Lading, “Pseudospectral method for the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 16, 1124–1130 (1999).
    [CrossRef]

2000

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

M. Johansson, B. Löfving, S. Hård, L. Thylén, M. Mokhtari, U. Westergren, C. Pala, “Study of an ultrafast analog-to-digital conversion scheme based on diffractive optics,” Appl. Opt. 39, 2881–2887 (2000).
[CrossRef]

1999

1998

C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

1997

1996

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

1994

1986

T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986).
[CrossRef]

1985

1977

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Anand, S.

C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Backlund, J.

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[CrossRef]

Bengtsson, J.

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[CrossRef]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

J. Bengtsson, “Kinoform design with an optimal-rotation-angle method,” Appl. Opt. 33, 6879–6884 (1994).
[CrossRef] [PubMed]

Bräuer, A.

Carlström, C.-F.

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[CrossRef]

C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Dannberg, P.

Demeester, P.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Dinesen, P. G.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Groen, F. H.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Hagberg, M.

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

Hård, S.

Herben, C. G. P.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Hesthaven, J. S.

Johansson, M.

Karthe, W.

Kley, E.-B.

Lading, L.

Landgren, G.

C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Larsson, A.

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Incoupling waveguide holograms for simultaneous focusing into multiple arbitrary positions,” Appl. Opt. 38, 5738–5746 (1999).
[CrossRef]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

Leijtens, X. J. M.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Li, M.

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

Löfving, B.

Lynov, J. P.

Maat, D. H. P.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Mokhtari, M.

Nishihara, H.

T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986).
[CrossRef]

Oei, Y. S.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Pala, C.

Pedersen, J. W.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Peng, S. T.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Schnabel, B.

Smit, M. K.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Suhara, T.

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).

Tamir, T.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Thylén, L.

van Dam, C.

M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Vreeburg, C. G. M.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

Waldhäusl, R.

Walpita, L. M.

Westergren, U.

Appl. Opt.

Appl. Phys.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

IEEE J. Quantum Electron.

T. Suhara, H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22, 845–867 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit, C. van Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

M. Li, J. Bengtsson, M. Hagberg, A. Larsson, T. Suhara, “Off-plane computer-generated waveguide hologram,” IEEE J. Sel. Top. Quantum Electron. 2, 226–235 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, “Compact integrated InP-based single-phasar optical crossconnect,” IEEE Photon. Technol. Lett. 10, 678–680 (1998).
[CrossRef]

J. Backlund, J. Bengtsson, C.-F. Carlström, A. Larsson, “Multifunctional grating couplers for bidirectional incoupling into planar waveguides,” IEEE Photon. Technol. Lett. 12, 314–316 (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

C.-F. Carlström, G. Landgren, S. Anand, “Low energy ionbeam etching of InP using methane chemistry,” J. Vac. Sci. Technol. B 16, 1018–1023 (1998).
[CrossRef]

Other

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Composite picture showing an input grating coupler with a wavelength response designed to focus different wavelengths, each with TE polarization, to different positions in the waveguide. The distribution of light propagating in the waveguide is simulated, whereas the images of the cleaved edge are experimental, captured with an IR camera. For a sketch of the setup, see the inset of Fig. 7.

Fig. 2
Fig. 2

Cellular structure of the input grating coupler.

Fig. 3
Fig. 3

Cell contribution to the electric field in one of the focus positions illustrated with a waveguide-emitting antenna with the same combination of input polarization and wavelength as the focus position.

Fig. 4
Fig. 4

Intensity in the desired focus positions for the four input wavelengths of the wavelength demultiplexing coupler in Fig. 1 as a function of the number of iterations in the design algorithm. The inset shows a map of the finally obtained grating coupler.

Fig. 5
Fig. 5

Measured polarization response of the input coupler designed for polarization independence (solid curve) and for a conventional grating coupler (dashed curve).

Fig. 6
Fig. 6

Input grating coupler with bidirectional polarizing splitting function.

Fig. 7
Fig. 7

Intensity in focus positions 1–4 (corresponding to design wavelengths λ14) as a function of the input wavelength for the grating coupler demultiplexer with a channel spacing of 2 nm.

Fig. 8
Fig. 8

(a) Images of the cleaved edge captured by an IR camera when the coupler is illuminated with different wavelengths. (b) Simulated intensity distribution in the waveguide for two different wavelengths.

Fig. 9
Fig. 9

Polarization response of the coupler designed for polarization-independent wavelength demultiplexing.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔE=AincRexp- αRg2expikeffR+ϕC× 1k1k2sink1t2sink2t2expi 2πS δ,
keff = 2πλ0 neff,
k1=keffRxR+kx-2πS, k2=keffRyR+ky,

Metrics